First about the error in your code. Compare this:
rows = calloc(dim*dim, sizeof(int*));
to this:
for (i=0 ; i<dim ; i++) {
board[i] = rows + i*dim*dim;
The entire size of the array allocated to rows
is dim*dim
elements. So, already in the second iteration of this loop, you access it out of bounds. You probably meant:
for (i=0 ; i<dim ; i++) {
board[i] = rows + i*dim;
As I already mentioned in the comment, this is not a 3D array. It mimics the usage in code by using pointers and you're using a kind-of clever trick here, so you only need 3 allocations in total. This might be a good idea under the following conditions:
- your
dim
is variable at runtime, so you can't know it in advance, and
- you have to write code for compilers that don't support VLAs1) (variable-length-arrays).
If one of this conditions is not true, it's much better to use a real 3D array. If the array doesn't have to live after leaving your function and the size isn't huge, just use a simple variable with automatic storage duration like
int board[3][3][3] = { 0 }; // possibly #define the dimension
or, for a variable dim
, requiring a compiler supporting VLAs
int board[dim][dim][dim] = { 0 };
If on the other hand, the array will be huge and/or you need to return it from your function, you indeed have to allocate it dynamically. Then just use the following:
int (*board)[3][3] = calloc(3, sizeof *board); // static size
int (*board)[dim][dim] = calloc(dim, sizeof *board); // dynamic case, with VLA suppport
Also note that calloc()
already sets your allocated memory to 0
, so no need for looping all over it.
Side notes:
with sizeof
, prefer the expression form, so instead of writing
int *a = calloc(5, sizeof(int));
better write
int *a = calloc(5, sizeof *a);
this avoids errors when you later change the type of a
.
always check the return value of malloc()
and friends -- they might return a null pointer (e.g. when you're running out of memory).
1) VLAs don't exist in the oldest standards C89/C90 -- they were introduced in C99 as a mandatory feature, but later made optional in C11. This allows C11 compilers to omit them, which might make sense when e.g. targeting embedded systems. In practice, you can safely assume a C11 compliant compiler supports them if it isn't special purpose.