for i in range(iter_time):
for step in range(len(batch_index)-1):
_,loss_=sess.run([train_op,loss], feed_dict={X:train_x[batch_index[step]:batch_index[step+1]], Y:train_y[batch_index[step]:batch_index[step+1]]})
if i % 100 == 0:
print('iter:',i,'loss:',loss_)
where train_x[batch_index[step]:batch_index[step+1]]
is a list with shape (80, 15, 44)
. I have tried to convert train_x
to np.array
but it still not work.