I have a dict with finance data that I want to convert to pd.DataFrame.
The data looks like:
{u'candles': [{u'complete': True,
u'mid': {u'c': u'1.19228',
u'h': u'1.19784',
u'l': u'1.18972',
u'o': u'1.19581'},
u'time': u'2018-05-06T21:00:00.000000000Z',
u'volume': 119139},
{u'complete': False,
u'mid': {u'c': u'1.18706',
u'h': u'1.19388',
u'l': u'1.18614',
u'o': u'1.19239'},
u'time': u'2018-05-07T21:00:00.000000000Z',
u'volume': 83259}],
u'granularity': u'D',
u'instrument': u'EUR_USD'}
It's a bit tricky since I want to have a dataframe that has these fields:
c h l o time volume
1.19228 1.19784 1.18972 1.19581 2018-05-06T21:00:00.000000000Z 119139
1.18706 1.19388 1.18614 1.19239 2018-05-07T21:00:00.000000000Z 83259
I have tried various combos like:
pd.DataFrame(dict['candles'])
pd.DataFrame([dict['candles']])
but it does not seem possible to convert to desired format without transforming the dict