If you actually had two distinct u8
s, the conventional solution involves bitwise manipulation, specifically shifting and bitwise OR. This requires zero heap allocation and is very efficient:
let number = ((vector[0] as u16) << 8) | vector[1] as u16;
And a graphical explanation:
A0 B0
+--------+ +--------+
|XXXXXXXX| |YYYYYYYY|
+-------++ +-------++
| |
A1 = A0 as u16 | B1 = B0 as u16 |
+---------------v+ +---------------v+
|00000000XXXXXXXX| |00000000YYYYYYYY|
+---------------++ +---------------++
| |
A2 = A1 << 8 | |
+---------------v+ |
|XXXXXXXX00000000| |
+---------------++ |
| +--+ |
+-------------->OR<--+
+-++
|
V = A2 | B1 |
+----------+----v+
|XXXXXXXXYYYYYYYY|
+----------------+
However, you are really looking at your problem too narrowly. You don't have two u8
, you have a &[u8]
.
In this case, use the byteorder crate:
use byteorder::{ByteOrder, LittleEndian}; // 1.3.4
fn main() {
let data = [1, 16];
let v = LittleEndian::read_u16(&data);
println!("{}", v);
}
This shows its power when you want to handle reading through the buffer:
use byteorder::{BigEndian, LittleEndian, ReadBytesExt}; // 1.3.4
fn main() {
let data = [1, 16, 1, 2];
let mut current = &data[..];
let v1 = current.read_u16::<LittleEndian>();
let v2 = current.read_u16::<BigEndian>();
println!("{:?}, {:?}", v1, v2); // Ok(4097), Ok(258)
}
As you can see, you need to be conscious of the endianness of your input data.
You could also get a fixed-size array from your slice and then use u16::from_le_bytes
. If you had a &[u8]
and wanted to get a Vec<u16>
, you can iterate over appropriately-sized slices using chunks_exact
(or array_chunks
).
See also:
Free code review on your original post:
There's no need to use to_vec
here, use vec!
instead.
There's no need to specify the vast majority of the types.
let vector = [1u8, 16].to_vec();
let vector0 = format!("{:02x}", vector[0]);
let vector1 = format!("{:02x}", vector[1]);
let mut vector_combined = String::new();
vector_combined = vector_combined + &vector0.clone();
vector_combined = vector_combined + &vector1.clone();
let number = u16::from_str_radix(&vector_combined.to_string(), 16).unwrap();
There's no need to clone the strings before taking a reference to them when adding.
There's no need to convert the String
to... another String
in from_str_radix
.
let vector0 = format!("{:02x}", vector[0]);
let vector1 = format!("{:02x}", vector[1]);
let mut vector_combined = String::new();
vector_combined = vector_combined + &vector0;
vector_combined = vector_combined + &vector1;
let number = u16::from_str_radix(&vector_combined, 16).unwrap();
There's no need to create an empty String
to append to, just use vector0
let vector0 = format!("{:02x}", vector[0]);
let vector1 = format!("{:02x}", vector[1]);
let vector_combined = vector0 + &vector1;
let number = u16::from_str_radix(&vector_combined, 16).unwrap();
There's no need to create two strings at all, one will do:
let vector_combined = format!("{:02x}{:02x}", vector[0], vector[1]);
let number = u16::from_str_radix(&vector_combined, 16).unwrap();
Of course, this still isn't the right solution, but it's better.