I have to answer the following question:
What sorting algorithm is recommended if the first n-m part
is already sorted and the remaining part m is unsorted? Are there any algorithms that take O(n log m) comparisons? What about O(m log n) comparisons?
I just can't find the solution.
My first idea was insertion sort because O(n) for almost sorted sequence. But since we don't know the size of m the Runtime is very likely to be O(n^2) eventough the sequence is half sorted already isn't it?
Then I tought perhabs its quick sort because it takes (Sum from k=1 to n) Cavg (1-m) + Cavg (n-m) comparisons. But after ignoring the n-m part of the sequence the remaining sequence is 1-m in quicksort and not m.
Merge Sort and heap sort should have a runtime of O(m log m) for the remaining sequence m I would say.
Does anyone have an idea or can give me some advice?
Greetings