Solution for object let's the user choose the number of dimensions. A little robust, my C++ maybe is not the best, but it was fun implementing. nvector<T>
represents resizable (in dimensions and count of elements in each dimension) array of element of T type, although only some resize functions are implemented. narray<T>
is the same, but the number of dimensions is not resizable. This works around the idea of recalculating index position of a multidimensional array using a single continuous array.
#include <cstdio>
#include <vector>
#include <iostream>
#include <cstddef>
#include <cstdarg>
#include <algorithm>
#include <numeric>
#include <cassert>
#include <memory>
#include <cstring>
using namespace std;
template<typename T>
class narray {
public:
static size_t compute_size(initializer_list<size_t>& dims) {
return accumulate(dims.begin(), dims.end(), 1, multiplies<size_t>());
}
static size_t compute_size(vector<size_t>& dims) {
return accumulate(dims.begin(), dims.end(), 1, multiplies<size_t>());
}
static size_t compute_distance(vector<size_t>& dims) {
return dims.size() > 1 ? dims[1] : 1;
}
static vector<size_t> remove_one_dim(vector<size_t> dims_) {
return vector<size_t>(dims_.begin() + 1, dims_.end());
}
narray(initializer_list<size_t> dims, T* data) :
dims_(dims), data_(data) {}
narray(vector<size_t> dims, T* data) :
dims_(dims), data_(data) {}
T operator*() {
return *data_;
}
T* operator&() {
return data_;
}
void operator=(T v) {
if (dims_.size() != 0)
throw runtime_error(__PRETTY_FUNCTION__);
*data_ = v;
}
void operator=(initializer_list<T> v) {
if (v.size() > size())
throw runtime_error(__PRETTY_FUNCTION__);
copy(v.begin(), v.end(), data_);
}
T* data() {
return data_;
}
T* data_last() {
return &data()[compute_size(dims_)];
}
size_t size() {
return compute_size(dims_);
}
size_t size(size_t idx) {
return dims_[idx];
}
narray<T> operator[](size_t idx) {
if (dims_.size() == 0)
throw runtime_error(__PRETTY_FUNCTION__);
return narray<T>(remove_one_dim(dims_),
&data_[idx * compute_distance(dims_)]);
}
class iterator {
public:
iterator(initializer_list<size_t>& dims, T* data) :
dims_(dims), data_(data) { }
iterator(vector<size_t>& dims, T* data) :
dims_(dims), data_(data) { }
iterator operator++() {
iterator i = *this;
data_ += compute_distance(dims_);
return i;
}
narray<T> operator*() {
return narray<T>(remove_one_dim(dims_), data_);
}
bool operator!=(const iterator& rhs) {
if (dims_ != rhs.dims_)
throw runtime_error(__PRETTY_FUNCTION__);
return data_ != rhs.data_;
}
private:
vector<size_t> dims_;
T* data_;
};
iterator begin() {
return iterator(dims_, data());
}
iterator end() {
return iterator(dims_, data_last());
}
private:
vector<size_t> dims_;
T* data_;
};
template<typename T>
class nvector {
public:
nvector(initializer_list<size_t> dims) :
dims_(dims), data_(narray<T>::compute_size(dims)) {}
nvector(vector<size_t> dims) :
dims_(dims), data_(narray<T>::compute_size(dims)) {}
nvector(initializer_list<size_t> dims, T* data) :
dims_(dims), data_(data) {}
nvector(vector<size_t> dims, T* data) :
dims_(dims), data_(data) {}
T* data() {
return data_.data();
}
T* data_last() {
return &data()[narray<T>::compute_size(dims_)];
}
size_t size() {
return narray<T>::compute_size(dims_);
}
narray<T> operator&() {
return narray<T>(dims_, data());
}
narray<T> operator[](size_t idx) {
if (dims_.size() == 0)
throw runtime_error(__PRETTY_FUNCTION__);
return narray<T>(narray<T>::remove_one_dim(dims_),
&data()[idx * narray<T>::compute_distance(dims_)]);
}
void operator=(initializer_list<T> v) {
if (v.size() > size())
throw runtime_error(__PRETTY_FUNCTION__);
copy(v.begin(), v.end(), data_.begin());
}
auto begin() {
return typename narray<T>::iterator(dims_, data());
}
auto end() {
return typename narray<T>::iterator(dims_, data_last());
}
// add and remove dimensions
void dimension_push_back(size_t dimsize) {
dims_.push_back(dimsize);
data_.resize(size());
}
void dimension_pop_back() {
dims_.pop_back();
data_.resize(size());
}
// TODO: resize dimension of index idx?
private:
vector<size_t> dims_;
vector<T> data_;
};
int main()
{
nvector<int> A({2, 3});
A = { 1,2,3, 4,5,6 };
assert(A.size() == 6);
assert(&A[0] == &A.data()[0]);
assert(&A[0][0] == &A.data()[0]);
assert(&A[1] == &A.data()[3]);
assert(&A[0][1] == &A.data()[1]);
assert(&A[1][1] == &A.data()[4]);
cout << "Currently array has " << A.size() << " elements: " << endl;
for(narray<int> arr1 : A) { // we iterate over arrays/dimensions
for(narray<int> arr2 : arr1) { // the last array has no dimensions
cout << "elem: " << *arr2 << endl;
}
}
cout << endl;
// assigment example
cout << "Now it is 4: " << *A[1][0] << endl;
A[1][0] = 10;
cout << "Now it is 10: " << *A[1][0] << endl;
return 0;
}
This code needs still much more work. It works only as a simple example. Maybe use shared_ptr in narray? Implement better exceptions?
So creating an array of n=5 dimensions with sizes size1, size2, size3, size4 and size5 would like this:
narray<int> arr({size1, size2, size3, size4, size5});
arr[0][1][2][3][4] = 5; // yay!