In this question someone commented that you could use PhantomData
to add a lifetime bound to a raw pointer inside a struct. I thought I'd try doing this on an existing piece of code I've been working on.
Here's our (minimised) starting point. This compiles (playground):
extern crate libc;
use libc::{c_void, free, malloc};
trait Trace {}
struct MyTrace {
#[allow(dead_code)]
buf: *mut c_void,
}
impl MyTrace {
fn new() -> Self {
Self {
buf: unsafe { malloc(128) },
}
}
}
impl Trace for MyTrace {}
impl Drop for MyTrace {
fn drop(&mut self) {
unsafe { free(self.buf) };
}
}
trait Tracer {
fn start(&mut self);
fn stop(&mut self) -> Box<Trace>;
}
struct MyTracer {
trace: Option<MyTrace>,
}
impl MyTracer {
fn new() -> Self {
Self { trace: None }
}
}
impl Tracer for MyTracer {
fn start(&mut self) {
self.trace = Some(MyTrace::new());
// Pretend the buffer is mutated in C here...
}
fn stop(&mut self) -> Box<Trace> {
Box::new(self.trace.take().unwrap())
}
}
fn main() {
let mut tracer = MyTracer::new();
tracer.start();
let _trace = tracer.stop();
println!("Hello, world!");
}
I think that the problem with the above code is that I could in theory move the buf
pointer out of a MyTrace
and use if after the struct has died. In this case the underlying buffer will have been freed due to the Drop
implementation.
By using a PhantomData
we can ensure that only references to buf
can be obtained, and that the lifetimes of those references are bound to the instances of MyTrace
from whence they came.
We can proceed like this (playground):
extern crate libc;
use libc::{c_void, free, malloc};
use std::marker::PhantomData;
trait Trace {}
struct MyTrace<'b> {
#[allow(dead_code)]
buf: *mut c_void,
_phantom: PhantomData<&'b c_void>,
}
impl<'b> MyTrace<'b> {
fn new() -> Self {
Self {
buf: unsafe { malloc(128) },
_phantom: PhantomData,
}
}
}
impl<'b> Trace for MyTrace<'b> {}
impl<'b> Drop for MyTrace<'b> {
fn drop(&mut self) {
unsafe { free(self.buf) };
}
}
trait Tracer {
fn start(&mut self);
fn stop(&mut self) -> Box<Trace>;
}
struct MyTracer<'b> {
trace: Option<MyTrace<'b>>,
}
impl<'b> MyTracer<'b> {
fn new() -> Self {
Self { trace: None }
}
}
impl<'b> Tracer for MyTracer<'b> {
fn start(&mut self) {
self.trace = Some(MyTrace::new());
// Pretend the buffer is mutated in C here...
}
fn stop(&mut self) -> Box<Trace> {
Box::new(self.trace.take().unwrap())
}
}
fn main() {
let mut tracer = MyTracer::new();
tracer.start();
let _trace = tracer.stop();
println!("Hello, world!");
}
But this will give the error:
error[E0495]: cannot infer an appropriate lifetime due to conflicting requirements
--> src/main.rs:53:36
|
53 | Box::new(self.trace.take().unwrap())
| ^^^^^^
|
note: first, the lifetime cannot outlive the lifetime 'b as defined on the impl at 46:1...
--> src/main.rs:46:1
|
46 | impl<'b> Tracer for MyTracer<'b> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
= note: ...so that the types are compatible:
expected std::option::Option<MyTrace<'_>>
found std::option::Option<MyTrace<'b>>
= note: but, the lifetime must be valid for the static lifetime...
= note: ...so that the expression is assignable:
expected std::boxed::Box<Trace + 'static>
found std::boxed::Box<Trace>
I have three sub-questions:
- Did I understand the motivation for
PhantomData
in this scenario correctly? - Where is
'static
coming from in the error message? - Can this be made to work without changing the interface of
stop
? Specifically, without adding a lifetime to the return type?