If you go the defer-recover-all-the-things, I suggest investing some time to make sure that a clear error message is collected with enough information to promptly act on it.
Writing the panic message to stderr/stdout is not great as it will be very hard to find where the problem is. In my experience the best approach is to invest a bit of time to get your Go programs to handle errors in a reasonable way. errors.Wrap
from "github.com/pkg/errors" for instance allows you to wrap all errors and get a stack-trace.
Recovering panic is often a necessary evil. Like you say, it's not ideal to crash the entire program just because one requested caused a panic. In most cases recovering panics will not back-fire, but it is possible for a program to end up in a undefined not-recoverable state that only a manual restart can fix. That being said, my suggestion in this case is to make sure your Go program exposes a way to create a core dump.
Here's how to write a core dump to stderr when SIGQUIT is sent to the Go program (eg. kill pid -QUIT
)
go func() {
// Based on answers to this stackoverflow question:
// https://stackoverflow.com/questions/19094099/how-to-dump-goroutine-stacktraces
sigs := make(chan os.Signal, 1)
signal.Notify(sigs, syscall.SIGQUIT)
for {
<-sigs
fmt.Fprintln(os.Stderr, "=== received SIGQUIT ===")
fmt.Fprintln(os.Stderr, "*** goroutine dump...")
var buf []byte
var bufsize int
var stacklen int
// Create a stack buffer of 1MB and grow it to at most 100MB if
// necessary
for bufsize = 1e6; bufsize < 100e6; bufsize *= 2 {
buf = make([]byte, bufsize)
stacklen = runtime.Stack(buf, true)
if stacklen < bufsize {
break
}
}
fmt.Fprintln(os.Stderr, string(buf[:stacklen]))
fmt.Fprintln(os.Stderr, "*** end of dump")
}
}()