In How does PostgreSQL approach a 1 + n query?, I learned that a correlated subquery can be rewritten as a left join:
select film_id, title,
(
select array_agg(first_name)
from actor
inner join film_actor using(actor_id)
where film_actor.film_id = film.film_id
) as actors
from film
order by title;
to
select f.film_id, f.title, array_agg(a.first_name)
from film f
left join film_actor fa using(film_id)
left join actor a using(actor_id)
group by f.film_id
order by f.title;
Bot queries return the same results, but the second query performs better.
This makes me wonder: why is the query planner unable to do such transformations by itself?
I can see why not all correlated subqueries could be transformed to a join, but I don't see any issues with this particular query.
update performance
I tried to compare the performance as following. I executed 2 consecutive loops of 100 times the first query, followed by 2 consecutive loops of 100 times the second query. I ignored the first loop in both cases, as I considered that a warm-up loop.
I get 16 seconds for 100x the first query and 11 seconds for 100x the second query.
The explains are as following:
correlated subquery:
Index Scan using idx_title on film (cost=0.28..24949.50 rows=1000 width=51) (actual time=0.690..74.828 rows=1000 loops=1)
SubPlan 1
-> Aggregate (cost=24.84..24.85 rows=1 width=32) (actual time=0.068..0.068 rows=1 loops=1000)
-> Hash Join (cost=10.82..24.82 rows=5 width=6) (actual time=0.034..0.055 rows=5 loops=1000)
Hash Cond: (film_actor.actor_id = actor.actor_id)
-> Bitmap Heap Scan on film_actor (cost=4.32..18.26 rows=5 width=2) (actual time=0.025..0.040 rows=5 loops=1000)
Recheck Cond: (film_id = film.film_id)
Heap Blocks: exact=5075
-> Bitmap Index Scan on idx_fk_film_id (cost=0.00..4.32 rows=5 width=0) (actual time=0.015..0.015 rows=5 loops=1000)
Index Cond: (film_id = film.film_id)
-> Hash (cost=4.00..4.00 rows=200 width=10) (actual time=0.338..0.338 rows=200 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 17kB
-> Seq Scan on actor (cost=0.00..4.00 rows=200 width=10) (actual time=0.021..0.133 rows=200 loops=1)
Planning time: 1.277 ms
Execution time: 75.525 ms
join:
Sort (cost=748.60..751.10 rows=1000 width=51) (actual time=35.865..36.060 rows=1000 loops=1)
Sort Key: f.title
Sort Method: quicksort Memory: 199kB
-> GroupAggregate (cost=645.31..698.78 rows=1000 width=51) (actual time=23.953..34.204 rows=1000 loops=1)
Group Key: f.film_id
-> Sort (cost=645.31..658.97 rows=5462 width=25) (actual time=23.910..25.210 rows=5465 loops=1)
Sort Key: f.film_id
Sort Method: quicksort Memory: 619kB
-> Hash Left Join (cost=84.00..306.25 rows=5462 width=25) (actual time=2.098..16.237 rows=5465 loops=1)
Hash Cond: (fa.actor_id = a.actor_id)
-> Hash Right Join (cost=77.50..231.03 rows=5462 width=21) (actual time=1.786..10.636 rows=5465 loops=1)
Hash Cond: (fa.film_id = f.film_id)
-> Seq Scan on film_actor fa (cost=0.00..84.62 rows=5462 width=4) (actual time=0.018..2.221 rows=5462 loops=1)
-> Hash (cost=65.00..65.00 rows=1000 width=19) (actual time=1.753..1.753 rows=1000 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 59kB
-> Seq Scan on film f (cost=0.00..65.00 rows=1000 width=19) (actual time=0.029..0.819 rows=1000 loops=1)
-> Hash (cost=4.00..4.00 rows=200 width=10) (actual time=0.286..0.286 rows=200 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 17kB
-> Seq Scan on actor a (cost=0.00..4.00 rows=200 width=10) (actual time=0.016..0.114 rows=200 loops=1)
Planning time: 1.648 ms
Execution time: 36.599 ms