I want to get the top N (maximal) args & values across an entire numpy matrix, as opposed to across a single dimension (rows / columns).
Example input (with N=3
):
import numpy as np
mat = np.matrix([[9,8, 1, 2], [3, 7, 2, 5], [0, 3, 6, 2], [0, 2, 1, 5]])
print(mat)
[[9 8 1 2]
[3 7 2 5]
[0 3 6 2]
[0 2 1 5]]
Desired output: [9, 8, 7]
Since max isn't transitive across a single dimension, going by rows or columns doesn't work.
# by rows, no 8
np.squeeze(np.asarray(mat.max(1).reshape(-1)))[:3]
array([9, 7, 6])
# by cols, no 7
np.squeeze(np.asarray(mat.max(0)))[:3]
array([9, 8, 6])
I have code that works, but looks really clunky to me.
# reshape into single vector
mat_as_vector = np.squeeze(np.asarray(mat.reshape(-1)))
# get top 3 arg positions
top3_args = mat_as_vector.argsort()[::-1][:3]
# subset the reshaped matrix
top3_vals = mat_as_vector[top3_args]
print(top3_vals)
array([9, 8, 7])
Would appreciate any shorter way / more efficient way / magic numpy function to do this!