set.seed(123)
df <- data.frame(loc.id = rep(c(1:3), each = 4*10),
year = rep(rep(c(1980:1983), each = 10), times = 3),
day = rep(1:10, times = 3*4),
x = sample(123:200, 4*3*10, replace = T))
I want to add one more column x.mv
which is 3 days moving average of x
for each loc.id and year combination
df %>% group_by(loc.id,year) %>% mutate(x.mv = zoo::rollmean(x, 3, fill = "NA", align = "right"))
loc.id year day x x.mv
<int> <int> <int> <int> <dbl>
1 1 1980 1 145 NA
2 1 1980 2 184 NA
3 1 1980 3 154 161
4 1 1980 4 191 176.
5 1 1980 5 196 180.
6 1 1980 6 126 171
7 1 1980 7 164 162
8 1 1980 8 192 161.
9 1 1980 9 166 174
10 1 1980 10 158 172
What I want to do is to replace the NAs in the x.mv
column with x
. I tried this:
df %>% group_by(loc.id,year) %>% mutate(x.mv = zoo::rollmean(x, 3, fill = x[1:2], align = "right"))
loc.id year day x x.mv
<int> <int> <int> <int> <dbl>
1 1 1980 1 145 145
2 1 1980 2 184 145
3 1 1980 3 154 161
4 1 1980 4 191 176.
5 1 1980 5 196 180.
6 1 1980 6 126 171
7 1 1980 7 164 162
8 1 1980 8 192 161.
9 1 1980 9 166 174
10 1 1980 10 158 172
But what it is doing instead is filling the NAs with the first value of x instead of the corresponding value of x. How do I fix it?