I am trying to find the best parameters for a lightgbm
model using GridSearchCV
from sklearn.model_selection
. I have not been able to find a solution that actually works.
I have managed to set up a partly working code:
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
np.random.seed(1)
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
y = pd.read_csv('y.csv')
y = y.values.ravel()
print(train.shape, test.shape, y.shape)
categoricals = ['COL_A','COL_B']
indexes_of_categories = [train.columns.get_loc(col) for col in categoricals]
gkf = KFold(n_splits=5, shuffle=True, random_state=42).split(X=train, y=y)
param_grid = {
'num_leaves': [31, 127],
'reg_alpha': [0.1, 0.5],
'min_data_in_leaf': [30, 50, 100, 300, 400],
'lambda_l1': [0, 1, 1.5],
'lambda_l2': [0, 1]
}
lgb_estimator = lgb.LGBMClassifier(boosting_type='gbdt', objective='binary', num_boost_round=2000, learning_rate=0.01, metric='auc',categorical_feature=indexes_of_categories)
gsearch = GridSearchCV(estimator=lgb_estimator, param_grid=param_grid, cv=gkf)
lgb_model = gsearch.fit(X=train, y=y)
print(lgb_model.best_params_, lgb_model.best_score_)
This seems to be working but with a UserWarning
:
categorical_feature
keyword has been found inparams
and will be ignored. Please usecategorical_feature
argument of the Dataset constructor to pass this parameter.
I am looking for a working solution or perhaps a suggestion on how to ensure that lightgbm accepts categorical arguments in the above code