Seems like the confusion in this question comes from the fact that the word "byte" in the C standard doesn't have the typical definition (which is 8 bits). Specifically, the word "byte" in the C standard means a collection of bits, where the number of bits is specified by the implementation-defined constant CHAR_BITS
. Furthermore, a "byte" as defined by the C standard is the smallest addressable object that a C program can access.
This leaves open the question as to whether there is a one-to-one correspondence between the C definition of "addressable", and the hardware's definition of "addressable". In other words, is it possible that the hardware can address objects that are smaller than a "byte"? If (as in the OP) a "byte" occupies 3 addresses, then that implies that "byte" accesses have an alignment restriction. Which is to say that 3 and 6 are valid "byte" addresses, but 4 and 5 are not. This is prohibited by section 6.2.8 which discusses the alignment of objects.
Which means that the architecture proposed by the OP is not supported by the C specification. In particular, an implementation may not have pointers that point to 4-bit objects when CHAR_BIT
is equal to 12.
Here are the relevant sections from the C standard:
§3.6 The definition of "byte" as used in the standard
[A byte is an] addressable unit of data storage large enough to hold
any member of the basic character set of the execution environment.
NOTE 1 It is possible to express the address of each individual byte
of an object uniquely.
NOTE 2 A byte is composed of a contiguous sequence of bits, the number
of which is implementation-defined. The least significant bit is
called the low-order bit; the most significant bit is called the
high-order bit.
§5.2.4.2.1 describes CHAR_BIT as the
number of bits for smallest object that is not a bit-field (byte)
§6.2.6.1 restricts all objects that are larger than a char to be a multiple of CHAR_BIT bits:
[...]
Except for bit-fields, objects are composed of contiguous sequences of
one or more bytes, the number, order, and encoding of which are either
explicitly specified or implementation-defined.
[...] Values stored in non-bit-field objects of any other object type
consist of n × CHAR_BIT bits, where n is the size of an object of that
type, in bytes.
§6.2.8 restricts the alignment of objects
Complete object types have alignment requirements which place
restrictions on the addresses at which objects of that type may be
allocated. An alignment is an implementation-defined integer value
representing the number of bytes between successive addresses at which
a given object can be allocated.
Valid alignments include only those values returned by an _Alignof
expression for fundamental types, plus an additional
implementation-defined set of values, which may be empty. Every
valid alignment value shall be a nonnegative integral power of two.
§6.5.3.2 specifies the sizeof
a char
, and hence a "byte"
When sizeof is applied to an operand that has type char, unsigned
char, or signed char, (or a qualified version thereof) the result is
1.