Here's a slightly different take. We can think of the number of ways an element, m
, can be k
th in the subsequence as the sum of all the ways the previous occurence of any element (including m
) can be (k-1)
th. As we move right, however, the only update needed is for m
; the other sums stay constant.
For example,
// We want to avoid counting [1,1,1], [1,2,1], etc. twice
[1, 2, 1, 1, 1]
(display the array vertically for convenience)
<- k ->
[1, -> 1: [1, 0, 0]
2, -> 2: [1, 1, 0]
1, -> 1: [1, 2, 1]
1, -> 1: [1, 2, 3]
1] -> 1: [1, 2, 3]
Now if we added another element, say 3,
...
3] -> 3: [1, 2, 3]
// 1 means there is one way
// the element, 3, can be first
// 2 means there are 2 ways
// 3 can be second: sum distinct
// column k[0] = 1 + 1 = 2
// 3 means there are 3 ways
// 3 can be third: sum distinct
// column k[1] = 2 + 1 = 3
Sum distinct k[2]
column:
0 + 3 + 3 = 6 subsequences
[1,2,1], [2,1,1], [1,1,1]
[1,1,3], [2,1,3], [3,2,1]
The sum-distinct for each column can be updated in O(1)
per iteration. The k
sums for the current element (we update a single list of those for each element), take O(k)
, which in our case is O(1)
.
JavaScript code:
function f(A, k){
A.unshift(null);
let sumDistinct = new Array(k + 1).fill(0);
let hash = {};
sumDistinct[0] = 1;
for (let i=1; i<A.length; i++){
let newElement;
if (!hash[A[i]]){
hash[A[i]] = new Array(k + 1).fill(0);
newElement = true;
}
let prev = hash[A[i]].slice();
// The number of ways an element, m, can be k'th
// in the subsequence is the sum of all the ways
// the previous occurence of any element
// (including m) can be (k-1)'th
for (let j=1; j<=k && j<=i; j++)
hash[A[i]][j] = sumDistinct[j - 1];
for (let j=2; j<=k && j<=i; j++)
sumDistinct[j] = sumDistinct[j] - prev[j] + hash[A[i]][j];
if (newElement)
sumDistinct[1] += 1;
console.log(JSON.stringify([A[i], hash[A[i]], sumDistinct]))
}
return sumDistinct[k];
}
var arr = [1, 2, 1, 1, 1, 3, 2, 1];
console.log(f(arr, 3));