I'm using betareg function in R to fit a model and then I have to predict the new Y given the new X. These are the data I (read from excel and) use to train the model:
y x1 x2 x3 x4
0,419634945 1,014238952 1,011464532 1,192017359 1,191387415
0,361534322 1,636566118 1,485164213 1,460187325 1,597295162
0,486509921 1,000498651 1,328485546 1,894474004 1,3618722
0,580568633 1,238241644 1,15981677 1,038092521 1,594942532
0,478963289 1,434048004 1,079663345 1,144157369 1,009562412
0,852646616 1,235856992 1,385227035 1,133296831 1,160178886
0,767787659 1,14211818 1,864746836 1,170483824 1,183169424
0,43807267 1,04318058 1,109918772 1,104738116 1,311819983
0,301183957 1,495354353 1,190626472 1,338857694 1,083106967
0,445263455 1,22351354 1,777189298 1,085002195 1,159102384
and this is the code used:
library(betareg)
library(openxlsx)
input_data<- read.xlsx("dati.xlsx")
Y <- input_data[,1]
X <- input_data[,2:ncol(input_data)]
beta_reg_fit <- betareg(formula = Y ~ data.matrix(X), link = "logit", link.phi = NULL, model = TRUE, y = TRUE, x = FALSE)
new_data <- data.frame(cbind(1.1, 1.2, 1.4, 1.3))
predictions <- predict(beta_reg_fit, new_data)
The variable new_data
represents my new observations... but I get the following warning message while using predict
Warning message:
'newdata' had 1 row but variables found have 10 rows
Can anybody help me? I can't find the correct usage of the predict function. I need to train my model on some date and forecast the dependet variable on a (only one) given set of independet variables