This Tensorflow code below raises a tf.errors.OutofRangeError
:
try:
while not coord.should_stop():
vector1,vector2,vector3,vector4,vector5,labels = sess.run([train_vector1,train_vector2,train_vector3,train_vector4,train_vector5,train_labels])
shape1 = tf.shape(vector1)
print (sess.run(shape1))
except tf.errors.OutOfRangeError:
print ('tf.errors.OutOfRangeError')
finally:
coord.request_stop()
Why is tf.errors.OutofRangeError
printed when all the samples are read?
It seems unreasonable.