I have a function that creates a 2-dim array, a Vandermonde matrix and is called as:
vandermonde(generator, rank)
Where generator is a n-sized array for example
generator = np.array([-1/2, 1/2, 3/2, 5/2, 7/2, 9/2])
and rank=4
Then I need to create 4 Vandermonde matrices (because rank=4
) skewed by h
in my space (that h
is arbitrary here, lets call h=1
).
Therefore I came with the following deterministic code:
V = np.array([
vandermonde(generator-0*h, rank),
vandermonde(generator-1*h, rank),
vandermonde(generator-2*h, rank),
vandermonde(generator-3*h, rank)
])
Then I want instead do multiple manual calls to vandermonde
I used a for
-loop as in:
V=[]
for i in range(rank):
V.append(vandermonde(generator - h*i, rank))
V = np.array(V)
This approach works fine, but seems too "patchy". I tried a np.append
approach as below:
M = np.array([])
for i in range(rank):
M = np.append(M,[vandermonde(generator - h*i, rank)])
But didn't worked as I expected, seems np.append
expand the array instead to create a new element.
My questions are:
How can I not use standard Python lists, use directly a np approach cause
np.append
seems not behave as I expect, instead it just grow that array instead add a new array elementIs there any more direct numpy approaches to this?
My vandermonde function is:
def vandermonde(generator, rank=None):
"""Returns a vandermonde matrix
If rank not passwd returns a square vandermonde matrix
"""
if rank is None:
rank = len(generator)
return np.tile(generator,(rank,1)) ** np.array(range(rank)).reshape((rank,1))
The expected answer is a 3 dimensional array with size (generator, rank, rank)
where each element is one of the generator skewed vandermonde matrices. For the constants above(generator, rank, h
) we have:
V= array([[[ 1. , 1. , 1. , 1. , 1. , 1. ],
[ -0.5 , 0.5 , 1.5 , 2.5 , 3.5 , 4.5 ],
[ 0.25, 0.25, 2.25, 6.25, 12.25, 20.25],
[ -0.12, 0.12, 3.38, 15.62, 42.88, 91.12]],
[[ 1. , 1. , 1. , 1. , 1. , 1. ],
[ -1.5 , -0.5 , 0.5 , 1.5 , 2.5 , 3.5 ],
[ 2.25, 0.25, 0.25, 2.25, 6.25, 12.25],
[ -3.38, -0.12, 0.12, 3.38, 15.62, 42.88]],
[[ 1. , 1. , 1. , 1. , 1. , 1. ],
[ -2.5 , -1.5 , -0.5 , 0.5 , 1.5 , 2.5 ],
[ 6.25, 2.25, 0.25, 0.25, 2.25, 6.25],
[-15.62, -3.38, -0.12, 0.12, 3.38, 15.62]],
[[ 1. , 1. , 1. , 1. , 1. , 1. ],
[ -3.5 , -2.5 , -1.5 , -0.5 , 0.5 , 1.5 ],
[ 12.25, 6.25, 2.25, 0.25, 0.25, 2.25],
[-42.88, -15.62, -3.38, -0.12, 0.12, 3.38]]])
Some related ideas can be found in this discussion on: efficient-way-to-compute-the-vandermonde-matrix