I have to find the best way to create a new Dataframe using existing DataFrame.
Look at this link to have full code : jdoodle.com/a/xKP
I have this kind of DataFrame :
df = pd.DataFrame({'length': [112, 214, 52,88], 'views': [10000, 50000, 25000,5000], 'click': [55, 64, 85,9]},
index = ['id1', 'id2', 'id3','id4'])
click length views
id1 55 112 10000
id2 64 214 50000
id3 85 52 25000
id4 9 88 5000
And need to have this result :
type_stat stat
id1 click 55
id2 click 64
id3 click 85
id4 click 9
id1 length 112
id2 length 214
id3 length 52
id4 length 88
id1 views 10000
id2 views 50000
id3 views 25000
id4 views 5000
Currently, I create a function who return DataFrame with one stat :
def df_by_stat(current_df,stat):
current_df['type_stat'] = stat
current_df['stat'] = current_df[stat].astype(int)
return current_df[['type_stat','stat']]
After I make an .append
with the function like this :
def final():
return df_by_stat(df,'click').append(
df_by_stat(df,'length')).append(
df_by_stat(df,'views'))
print(final())
This way is working but its complexity depends on rows and columns cardinalities witch is too expensive. That's why I need your help to find a best method.