Use select_dtypes
for only object columns (obviously strings) with applymap
and in
:
df = pd.DataFrame({'vals': [1, 2, 3, 4],
'ids': [None, u'bball', u'cnut', u'fball'],
'id2': [u'uball', u'mball', u'pnut', u'zball']})
print (df)
vals ids id2
0 1 None uball
1 2 bball mball
2 3 cnut pnut
3 4 fball zball
mask = df.select_dtypes(include=[object]).applymap(lambda x: 'ball' in x if pd.notnull(x) else False)
#if always non NaNs, no Nones
#mask = df.select_dtypes(include=[object]).applymap(lambda x: 'ball' in x)
print (mask)
ids id2
0 False True
1 True True
2 False False
3 True True
Another solution is use apply
with contains
:
mask = df.select_dtypes(include=[object]).apply(lambda x: x.str.contains('ball', na=False))
#if always non NaNs, no Nones
#mask = df.select_dtypes(include=[object]).apply(lambda x: x.str.contains('ball'))
print (mask)
ids id2
0 False True
1 True True
2 False False
3 True True
Then for filtering use DataFrame.any
for check at least one True
per rows or DataFrame.all
for check all values per rows:
df1 = df[mask.any(axis=1)]
print (df1)
vals ids id2
0 1 None uball
1 2 bball mball
3 4 fball zball
df2 = df[mask.all(axis=1)]
print (df2)
vals ids id2
1 2 bball mball
3 4 fball zball