I am having a Python Pandas DataFrame like
>>> df
classification like
0 flower 1
1 flower 0
2 flower 0
3 adventure 1
4 adventure 1
I want to create an output DataFrame like
>>> df
classification like liked
0 flower 1 True
1 flower 0 False
2 flower 0 False
3 adventure 1 True
4 adventure 1 True
I am "apply"ing the Python lambda function on the input DataFrame as follows:
>>> df['like'].apply(lambda x: x == 1)
But I am getting all 'False' under the 'liked' column
>>> df
classification like liked
0 flower 1 False
1 flower 0 False
2 flower 0 False
3 adventure 1 False
4 adventure 1 False
Any quick suggestions will be helpful.
>>> df['like'].astype(int)
0 1
1 0
2 0
3 1
4 1
Name: like, dtype: int32
@jezrael
>>> df['liked'] = df['like'].astype(bool)
>>> df
classification like liked
0 flower 1 True
1 flower 0 True
2 flower 0 True
3 adventure 1 True
4 adventure 1 True
@jezrael : DTypes
>>> df.dtypes
classification object
like object
liked bool
dtype: object