Hi I currently have a function that is able to split values in a same cell that is delimited by a new line. However the function below only accepts me to pass through one column at a time was thinking if there is any other ways that I can pass it through multiple columns or in fact the whole dataframe.
A sample would be like this
A B C
1\n2\n3 2\n\5 A
The code is below
def tidy_split(df, column, sep='|', keep=False):
indexes = list()
new_values = list()
df = df.dropna(subset=[column])
for i, presplit in enumerate(df[column].astype(str)):
values = presplit.split(sep)
if keep and len(values) > 1:
indexes.append(i)
new_values.append(presplit)
for value in values:
indexes.append(i)
new_values.append(value)
new_df = df.iloc[indexes, :].copy()
new_df[column] = new_values
return new_df
It currently works when I run
df1 = tidy_split(df, 'A', '\n')
After running the function of selecting only column A
A B C
1 2\n5 A
2 2\n5 A
3 2\n5 A
I was hoping to be able to pass in more than just an accepted argument and in this case splitting column 'B' as well. Previously I have attempted passing in lambda or attempted using apply but it requires a positional argument which is 'column'. Would appreciate any help given! Was thinking if a loop is possible
EDIT: Desired output as each number refer to something important Before
A B C
1\n2\n3 2\n5 A
After
A B C
1 2 A
2 5 A
3 n/a A