I am trying to train 3D-Unet in caffe
. The width, height and depth of different volumes is different. The input shape of the first volume in HDF5 dataset is 1 1 104 281 389
(NxCxDxHxW), when it reaches to the Concat layer
(concat_d2c_u2a-b), it is raising an error, which it is inputs are with the following two shapes:
- 1 256 19 64 91 scaled2c_relu_d2c_0_split_1
- 1 512 12 56 84 scaleu2a
How can I solve this issue? Is it because of the order of dimensions?
I0708 22:19:59.811188 30282 layer_factory.cpp:74] Creating layer concat_d2c_u2a-b
I0708 22:19:59.811198 30282 net.cpp:185] Creating Layer concat_d2c_u2a-b
I0708 22:19:59.811200 30282 net.cpp:549] concat_d2c_u2a-b <- scaleu2a
I0708 22:19:59.811203 30282 net.cpp:549] concat_d2c_u2a-b <- scaled2c_relu_d2c_0_split_1
I0708 22:19:59.811208 30282 net.cpp:515] concat_d2c_u2a-b -> u2b
F0708 22:19:59.811223 30282 concat_layer.cpp:45] Check failed: top_shape[j] == bottom[i]->shape(j) (12 vs. 19) All inputs must have the same shape, except at concat_axis.
*** Check failure stack trace: ***