I am running h2o grid search on R. The model is a glm using a gamma distribution. I have defined the grid using the following settings. hyper_parameters = list(alpha = c(0, .5), missing_values_handling = c("Skip", "MeanImputation"))
h2o.grid(algorithm = "glm", # Setting algorithm type
grid_id = "grid.s", # Id so retrieving information on iterations will be easier later
x = predictors, # Setting predictive features
y = response, # Setting target variable
training_frame = data, # Setting training set
validation_frame = validate, # Setting validation frame
hyper_params = hyper_parameters, # Setting apha values for iterations
remove_collinear_columns = T, # Parameter to remove collinear columns
lambda_search = T, # Setting parameter to find optimal lambda value
seed = 1234, # Setting to ensure replicateable results
keep_cross_validation_predictions = F, # Setting to save cross validation predictions
compute_p_values = F, # Calculating p-values of the coefficients
family = 'gamma', # Distribution type used
standardize = T, # Standardizing continuous variables
nfolds = 2, # Number of cross-validations
fold_assignment = "Modulo", # Specifying fold assignment type to use for cross validations
link = "log")
When i run the above script, i get the following error: Error in hyper_names[[index2]] : subscript out of bounds
Please can you help me find where the error is