I have a code like this:
nf<- read.csv("test2.csv")#test 2 is containing 79 rows(name of documents) and one column of text as containing document.
corpus <- Corpus(VectorSource(nf$segment))
corpus <- tm_map(corpus, tolower)
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, function(x) removeWords(x, stopwords("english")))
corpus <- tm_map(corpus, function(x) removeWords(x,"shall"))
corpus <- tm_map(corpus, function(x) removeWords(x,"will"))
corpus <- tm_map(corpus, function(x) removeWords(x,"can"))
corpus <- tm_map(corpus, function(x) removeWords(x,"could"))
corpus <- tm_map(corpus, stemDocument, language = "english")
td.mat <- as.matrix(TermDocumentMatrix(corpus))
dist.mat <- dist(t(as.matrix(td.mat)))
ft <- hclust(dist.mat, method="ward.D2")
plot(ft)
I have cluster dendrogram from documents. if I cut I in height=50 .how I can have the terms in this level?