Here is the algorithm for finding longest palindromic substring given a string s
using bottom-up dynamic programming. So the algorithm explores all possible length j
substring and checks whether it is a valid palindrome for j
in 1 to n. The resulting time and space complexity is O(n^2)
.
def longestPalindrome(s):
n = len(s)
if n < 2:
return s
P = [[False for _ in range(n)] for _ in range(n)]
longest = s[0]
# j is the length of palindrome
for j in range(1, n+1):
for i in range(n-j+1):
# if length is less than 3, checking s[i] == s[i+j-1] is sufficient
P[i][i+j-1] = s[i] == s[i+j-1] and (j < 3 or P[i+1][i+j-2])
if P[i][i+j-1] and j > len(longest):
longest = s[i:i+j]
return longest
I am trying to implement the same algorithm in top-down approach with memoization.
Question: Is it possible to convert this algorithm to top-down approach?
There are many questions about longest palindromic substring, but they are mostly using this bottom-up approach. The answer in https://stackoverflow.com/a/29959104/6217326 seems to be the closest to what I have in mind. But the answer seems to be using different algorithm from this one (and much slower).