I'm reading in an excel file and unioning it to a csv file.
When I read in the excel file I have a field of dates:
0 2018-05-28 00:00:00
1 9999-12-31 00:00:00
2 2018-02-26 00:00:00
3 2018-02-26 00:00:00
4 2018-02-26 00:00:00
Name: Date_started, dtype: object
I check the data type
df['Date_started'].dtype
dtype('O')
Then when I write out the resultant dataframe to csv I get this:
df.to_csv(folderpath + "Date_Started_df.csv",encoding="UTF-8" , index=False, na_rep='',date_format='%d%m%Y')
Date_Started
28/05/2018 00:00
31/12/9999 00:00
26/02/2018 00:00
26/02/2018 00:00
26/02/2018 00:00
I have tried
df.loc[:,'Date_Started'] = df['Date_Started'].astype('str').str[8:10] + "/" +
df['Date_Started'].astype('str').str[5:7] + "/" +
df['Date_Started'].astype('str').str[:4]
Which gave me:
0 28/05/2018
1 31/12/9999
2 26/02/2018
3 26/02/2018
4 26/02/2018
Name: Date_started, dtype: object
I thought it might be in the writing out:
df.to_csv(filename, date_format='%Y%m%d')
but I still got the times!?