I am trying to calculate the combinations of elements of a matrix but each element should appear only once.
The (real) matrix is symmetric, and can have more then 5 elements (up to ~2000):
o <- matrix(runif(25), ncol = 5, nrow = 5)
dimnames(o) <- list(LETTERS[1:5], LETTERS[1:5])
# A B C D E
# A 0.4400317 0.1715681 0.7319108946 0.3994685 0.4466997
# B 0.5190471 0.1666164 0.3430245044 0.3837903 0.9322599
# C 0.3249180 0.6122229 0.6312876740 0.8017402 0.0141673
# D 0.1641411 0.1581701 0.0001703419 0.7379847 0.8347536
# E 0.4853255 0.5865909 0.6096330935 0.8749807 0.7230507
I desire to calculate the product of all the combinations of pairs (If possible it should appear all elements:AB, CD, EF
if the matrix is of 6 elements), where for each pair one letter is the column, the other one is the row. Here are some combinations:
AB, CD, E
AC, BD, E
AD, BC, E
AE, BC, D
AE, BD, C
Where the value of the single element is just 1.
Combinations not desired:
AB, BC: Element B appears twice
AB, AC: Element A appears twice
Things I tried:
I thought about removing the unwanted part of the matrix:
out <- which(upper.tri(o), arr.ind = TRUE)
out <- cbind.data.frame(out, value = o[upper.tri(o)])
out[, 1] <- colnames(o)[out[, 1]]
out[, 2] <- colnames(o)[out[, 2]]
# row col value
# 1 A B 0.1715681
# 2 A C 0.7319109
# 3 B C 0.3430245
# 4 A D 0.3994685
# 5 B D 0.3837903
# 6 C D 0.8017402
# 7 A E 0.4466997
# 8 B E 0.9322599
# 9 C E 0.0141673
# 10 D E 0.8347536
My attempt involves the following process:
- Make a copy of the matrix (out)
- Store first value of the first row.
- Remove all the pairs that involve any of the pair.
- Select the next pair of the resulting matrix
- Repeat until all rows are removed of the matrix
- Repeat 2:5 starting from a different row
However, this method has one big problem, it doesn't guarantee that all the combinations are stored, and it could store several times the same combination.
My expected output is a vector, where each element is the product of the values in the cell selected by the combination:
AB, CD: 0.137553
How can I extract all those combinations efficiently?