0

I was wondering if there is a way I can use LMfit to fit datasets that have different sizes with the same model with a some shared and some independent parameters.

This link is the closest I found to a similar question but it assumes the same x for all y.

Thanks for all advice and input

  • If one of the data sets has more data points as the other, the curve fitting will be implicitly weighted toward the data set with more data points. You may have to use weighted fitting to counter this behavior if this is not desired. I have a scipy curve_fit example for this if you cannot find an lmfit solution. – James Phillips Jul 23 '18 at 17:19
  • 1
    A scipy curve_fit example would be very useful, thanks a tonne! – Anil Radhakrishnan Jul 23 '18 at 17:33

1 Answers1

2

Per your comment that a scipy example is OK:

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

y1 = np.array([ 16.00,  18.42,  20.84,  23.26])
y2 = np.array([-20.00, -25.50, -31.00, -36.50, -42.00])
comboY = np.append(y1, y2)

x1 = np.array([5.0, 6.1, 7.2, 8.3])
x2 = np.array([15.0, 16.1, 17.2, 18.3, 19.4])
comboX = np.append(x1, x2)

if len(y1) != len(x1):
    raise(Exception('Unequal x1 and y1 data length'))
if len(y2) != len(x2):
    raise(Exception('Unequal x2 and y2 data length'))


def function1(data, a, b, c): # not all parameters are used here, c is shared
        return a * data + c

def function2(data, a, b, c): # not all parameters are used here, c is shared
        return b * data + c


def combinedFunction(comboData, a, b, c):
    # single data reference passed in, extract separate data
    extract1 = comboData[:len(x1)] # first data
    extract2 = comboData[len(x1):] # second data

    result1 = function1(extract1, a, b, c)
    result2 = function2(extract2, a, b, c)

    return np.append(result1, result2)


# some initial parameter values
initialParameters = np.array([1.0, 1.0, 1.0])

# curve fit the combined data to the combined function
fittedParameters, pcov = curve_fit(combinedFunction, comboX, comboY, initialParameters)

# values for display of fitted function
a, b, c = fittedParameters

y_fit_1 = function1(x1, a, b, c) # first data set, first equation
y_fit_2 = function2(x2, a, b, c) # second data set, second equation

plt.plot(comboX, comboY, 'D') # plot the raw data
plt.plot(x1, y_fit_1) # plot the equation using the fitted parameters
plt.plot(x2, y_fit_2) # plot the equation using the fitted parameters
plt.show()

print('a, b, c:', fittedParameters)
James Phillips
  • 4,526
  • 3
  • 13
  • 11