I'm trying to convert SPSS timestamps to human readable timestamps such as
data['Completion_date'] = pd.to_datetime(
data['Completion_date']/86400, unit='D',
origin=pd.Timestamp("1582-10-14"))
but get
Traceback (most recent call last):
File "<input>", line 1, in <module>
File "pandas/_libs/tslibs/timestamps.pyx", line 644, in pandas._libs.tslibs.timestamps.Timestamp.__new__
File "pandas/_libs/tslibs/conversion.pyx", line 275, in pandas._libs.tslibs.conversion.convert_to_tsobject
File "pandas/_libs/tslibs/conversion.pyx", line 470, in pandas._libs.tslibs.conversion.convert_str_to_tsobject
File "pandas/_libs/tslibs/conversion.pyx", line 439, in pandas._libs.tslibs.conversion.convert_str_to_tsobject
File "pandas/_libs/tslibs/np_datetime.pyx", line 121, in pandas._libs.tslibs.np_datetime.check_dts_bounds
pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond timestamp: 1582-10-14 00:00:00
Example: 13725072000 should convert to 2017-09-18
Dates in SPSS are recorded in seconds since October 14, 1582, the date of the beginning of the Julian calendar.
How else would I do it?