As noted in this question the list-comprehension uses list.append
under the hood, so it will call the list-resize method, which overallocates.
To demonstrate this to yourself, you can actually use the dis
dissasembler:
>>> code = compile('[x for x in iterable]', '', 'eval')
>>> import dis
>>> dis.dis(code)
1 0 LOAD_CONST 0 (<code object <listcomp> at 0x10560b810, file "", line 1>)
2 LOAD_CONST 1 ('<listcomp>')
4 MAKE_FUNCTION 0
6 LOAD_NAME 0 (iterable)
8 GET_ITER
10 CALL_FUNCTION 1
12 RETURN_VALUE
Disassembly of <code object <listcomp> at 0x10560b810, file "", line 1>:
1 0 BUILD_LIST 0
2 LOAD_FAST 0 (.0)
>> 4 FOR_ITER 8 (to 14)
6 STORE_FAST 1 (x)
8 LOAD_FAST 1 (x)
10 LIST_APPEND 2
12 JUMP_ABSOLUTE 4
>> 14 RETURN_VALUE
>>>
Notice the LIST_APPEND
opcode in the disassembly of the <listcomp>
code object. From the docs:
LIST_APPEND(i)
Calls list.append(TOS[-i], TOS)
. Used to implement list comprehensions.
Now, for the list-repetition operation, we have a hint about what is going on if we consider:
>>> import sys
>>> sys.getsizeof([])
64
>>> 8*10
80
>>> 64 + 80
144
>>> sys.getsizeof([None]*10)
144
So, it seems to be able to exactly allocate the size. Looking at the source code, we see this is exactly what happens:
static PyObject *
list_repeat(PyListObject *a, Py_ssize_t n)
{
Py_ssize_t i, j;
Py_ssize_t size;
PyListObject *np;
PyObject **p, **items;
PyObject *elem;
if (n < 0)
n = 0;
if (n > 0 && Py_SIZE(a) > PY_SSIZE_T_MAX / n)
return PyErr_NoMemory();
size = Py_SIZE(a) * n;
if (size == 0)
return PyList_New(0);
np = (PyListObject *) PyList_New(size);
Namely, here: size = Py_SIZE(a) * n;
. The rest of the functions simply fills the array.