In a Jupyter Notebook I am visualizing the Iris dataset with seaborn in combination with ipywidgets. That works fine, except that is not that fast because the plots have to be rendered every time you select a new combination of the species 'versicolor', 'virginica' and 'setosa'. See first code block.
So I tried to speed up the interaction by pre-processing the plots for each combination of species and storing them in a dictionary. See second code block. The dictionary seems to contain all plots, but they don't show.
Any suggestions how to fix this?
First code block:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from ipywidgets import *
sns.set(style="white")
iris = sns.load_dataset("iris")
def iris_pg(species):
g = sns.PairGrid(iris[iris.species.isin(species)], diag_sharey=False)
g.map_lower(sns.kdeplot)
g.map_upper(sns.scatterplot)
g.map_diag(sns.kdeplot, lw=3)
return plt.show()
interact(iris_pg,
species = widgets.SelectMultiple(options=iris.species.unique(),
value=tuple(iris.species.unique()[-2:]),
rows=len(iris.species.unique()),
description='species',
disabled=False))
Second code block:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from ipywidgets import *
from itertools import combinations
sns.set(style="white")
iris = sns.load_dataset("iris")
all_combinations = list()
for i in range(1, len(iris.species.unique()) + 1):
for combi in combinations(iris.species.unique(), i):
all_combinations.append(combi)
all_plots = dict()
for i in all_combinations:
all_plots[i] = sns.PairGrid(iris[iris.species.isin(i)], diag_sharey=False)
all_plots[i].map_lower(sns.kdeplot)
all_plots[i].map_upper(sns.scatterplot)
all_plots[i].map_diag(sns.kdeplot, lw=3)
def iris_pg(species):
all_plots[species]
return plt.show()
options = iris.species.unique()
value = tuple(iris.species.unique()[-2:])
rows = len(iris.species.unique())
interact(iris_pg,
species = widgets.SelectMultiple(options=options,
value=value,
rows=rows,
description='species',
disabled=False))