I need to get the 3 largest commodities by county from an excel file, and I then, in turn, want to output these results to a new column in excel. I have gotten the sorting piece done with some help from this forum, but can't seem to figure out how I can export to it to excel - I was trying to make a new data frame column, which I would then write the data frame to excel, but if there is a more direct way, I'd appreciate it.
df = pd.read_excel('abc.xlsx')
d = df.set_index('county').to_dict('index')
for k, v in d.items():
i = sorted(v.items(), key = lambda x: x[1], reverse=True)
print([k, ', '.join([f'{com}: {value}' for, value in i[0:3]])])
I ultimately want to figure out how to change that print line to get it to output the 3 largest commodities and their values to excel. I have attached images of the current data structure, and what I want it to look like.
Here is the dictionary with the first few rows of data - hopefully this helps:
{1001: {'CATTLE_USDA_VALUE': 5988000.0, 'CORN_USDA_VALUE': 460000.0, 'COTTON_USDA_VALUE': 5465000.0, 'DAIRY_USDA_VALUE': 0.0, 'HOGS_USDA_VALUE': 3000.0, 'POULTRY_USDA_VALUE': 0.0, 'SOYBEANS_USDA_VALUE': 664000.0, 'WHEAT_USDA_VALUE': 679000.0, 'TOTAL_USDA_VALUE': 19811000.0, 'CATTLE_USDA_Share': 0.30225632224521731, 'CORN_USDA_SHARE': 0.023219423552571804, 'COTTON_USDA_SHARE': 0.2758568472060976, 'DAIRY_USDA_SHARE': 0.0, 'HOGS_USDA_SHARE': 0.00015143102316894655, 'POULTRY_USDA_SHARE': 0.0, 'SOYBEANS_USDA_SHARE': 0.033516733128060167, 'WHEAT_USDA_SHARE': 0.034273888243904899, 'CATTLE_FDIC_SHARE': 0.0, 'CATTLE_REPORTING_SHARE': 0.0, 'CORN_FDIC_SHARE': 0.0, 'CORN_REPORTING_SHARE': 0.0, 'COTTON_FDIC_SHARE': 0.0, 'COTTON_REPORTING_SHARE': 0.0, 'DAIRY_FDIC_SHARE': 0.0, 'DAIRY_REPORTING_SHARE': 0.0, 'HOGS_FDIC_SHARE': 0.0, 'HOGS_REPORTING_SHARE': 0.0, 'POULTRY_FDIC_SHARE': 36.031179424999898, 'POULTRY_REPORTING_SHARE': 74.074074074099897, 'SOYBEANS_FDIC_SHARE': 0.0, 'SOYBEANS_REPORTING_SHARE': 0.0, 'WHEAT_FDIC_SHARE': 0.0, 'WHEAT_REPORTING_SHARE': 0.0}, 1003: {'CATTLE_USDA_VALUE': 0.0, 'CORN_USDA_VALUE': 3818000.0, 'COTTON_USDA_VALUE': 7344000.0, 'DAIRY_USDA_VALUE': 220000.0, 'HOGS_USDA_VALUE': 4000.0, 'POULTRY_USDA_VALUE': 0.0, 'SOYBEANS_USDA_VALUE': 8977000.0, 'WHEAT_USDA_VALUE': 3680000.0, 'TOTAL_USDA_VALUE': 135562000.0, 'CATTLE_USDA_Share': 0.0, 'CORN_USDA_SHARE': 0.028164234815066171, 'COTTON_USDA_SHARE': 0.05417447367256311, 'DAIRY_USDA_SHARE': 0.001622873666661749, 'HOGS_USDA_SHARE': 2.9506793939304526e-05, 'POULTRY_USDA_SHARE': 0.0, 'SOYBEANS_USDA_SHARE': 0.066220622298284182, 'WHEAT_USDA_SHARE': 0.027146250424160162, 'CATTLE_FDIC_SHARE': 12.3912520289, 'CATTLE_REPORTING_SHARE': 82.142857142899899, 'CORN_FDIC_SHARE': 0.0, 'CORN_REPORTING_SHARE': 0.0, 'COTTON_FDIC_SHARE': 0.0, 'COTTON_REPORTING_SHARE': 0.0, 'DAIRY_FDIC_SHARE': 0.0, 'DAIRY_REPORTING_SHARE': 0.0, 'HOGS_FDIC_SHARE': 0.0, 'HOGS_REPORTING_SHARE': 0.0, 'POULTRY_FDIC_SHARE': 32.076141693899899, 'POULTRY_REPORTING_SHARE': 75.0, 'SOYBEANS_FDIC_SHARE': 0.0, 'SOYBEANS_REPORTING_SHARE': 0.0, 'WHEAT_FDIC_SHARE': 0.0, 'WHEAT_REPORTING_SHARE': 0.0}, 1005: {'CATTLE_USDA_VALUE': 5581000.0, 'CORN_USDA_VALUE': 1324000.0, 'COTTON_USDA_VALUE': 4904000.0, 'DAIRY_USDA_VALUE': 0.0, 'HOGS_USDA_VALUE': 0.0, 'POULTRY_USDA_VALUE': 83809000.0, 'SOYBEANS_USDA_VALUE': 0.0, 'WHEAT_USDA_VALUE': 0.0, 'TOTAL_USDA_VALUE': 104356000.0, 'CATTLE_USDA_Share': 0.05348039403580053, 'CORN_USDA_SHARE': 0.012687339491739814, 'COTTON_USDA_SHARE': 0.046992985549465294, 'DAIRY_USDA_SHARE': 0.0, 'HOGS_USDA_SHARE': 0.0, 'POULTRY_USDA_SHARE': 0.80310667331059071, 'SOYBEANS_USDA_SHARE': 0.0, 'WHEAT_USDA_SHARE': 0.0, 'CATTLE_FDIC_SHARE': 0.0, 'CATTLE_REPORTING_SHARE': 0.0, 'CORN_FDIC_SHARE': 0.0, 'CORN_REPORTING_SHARE': 0.0, 'COTTON_FDIC_SHARE': 0.0, 'COTTON_REPORTING_SHARE': 0.0, 'DAIRY_FDIC_SHARE': 0.0, 'DAIRY_REPORTING_SHARE': 0.0, 'HOGS_FDIC_SHARE': 0.0, 'HOGS_REPORTING_SHARE': 0.0, 'POULTRY_FDIC_SHARE': 0.0, 'POULTRY_REPORTING_SHARE': 0.0, 'SOYBEANS_FDIC_SHARE': 1.5549794663100001, 'SOYBEANS_REPORTING_SHARE': 64.2201834862, 'WHEAT_FDIC_SHARE': 1.0388869362099999, 'WHEAT_REPORTING_SHARE': 60.550458715600001}, 1007: {'CATTLE_USDA_VALUE': 1924000.0, 'CORN_USDA_VALUE': 0.0, 'COTTON_USDA_VALUE': 0.0, 'DAIRY_USDA_VALUE': 0.0, 'HOGS_USDA_VALUE': 0.0, 'POULTRY_USDA_VALUE': 0.0, 'SOYBEANS_USDA_VALUE': 0.0, 'WHEAT_USDA_VALUE': 0.0, 'TOTAL_USDA_VALUE': 0.0, 'CATTLE_USDA_Share': 0.0, 'CORN_USDA_SHARE': 0.0, 'COTTON_USDA_SHARE': 0.0, 'DAIRY_USDA_SHARE': 0.0, 'HOGS_USDA_SHARE': 0.0, 'POULTRY_USDA_SHARE': 0.0, 'SOYBEANS_USDA_SHARE': 0.0, 'WHEAT_USDA_SHARE': 0.0, 'CATTLE_FDIC_SHARE': 0.0, 'CATTLE_REPORTING_SHARE': 0.0, 'CORN_FDIC_SHARE': 3.70720825635, 'CORN_REPORTING_SHARE': 71.604938271600005, 'COTTON_FDIC_SHARE': 0.0, 'COTTON_REPORTING_SHARE': 0.0, 'DAIRY_FDIC_SHARE': 0.0, 'DAIRY_REPORTING_SHARE': 0.0, 'HOGS_FDIC_SHARE': 0.0, 'HOGS_REPORTING_SHARE': 0.0, 'POULTRY_FDIC_SHARE': 43.716573955800001, 'POULTRY_REPORTING_SHARE': 77.777777777799898, 'SOYBEANS_FDIC_SHARE': 4.7009247847799998, 'SOYBEANS_REPORTING_SHARE': 61.728395061699899, 'WHEAT_FDIC_SHARE': 0.0, 'WHEAT_REPORTING_SHARE': 0.0}, 1009: {'CATTLE_USDA_VALUE': 11721000.0, 'CORN_USDA_VALUE': 831000.0, 'COTTON_USDA_VALUE': 1203000.0, 'DAIRY_USDA_VALUE': 0.0, 'HOGS_USDA_VALUE': 28000.0, 'POULTRY_USDA_VALUE': 153682000.0, 'SOYBEANS_USDA_VALUE': 1490000.0, 'WHEAT_USDA_VALUE': 0.0, 'TOTAL_USDA_VALUE': 178191000.0, 'CATTLE_USDA_Share': 0.065777732882132095, 'CORN_USDA_SHARE': 0.0046635351953802379, 'COTTON_USDA_SHARE': 0.0067511827196659767, 'DAIRY_USDA_SHARE': 0.0, 'HOGS_USDA_SHARE': 0.00015713475989247492, 'POULTRY_USDA_SHARE': 0.86245657749269045, 'SOYBEANS_USDA_SHARE': 0.0083618140085638445, 'WHEAT_USDA_SHARE': 0.0, 'CATTLE_FDIC_SHARE': 0.0, 'CATTLE_REPORTING_SHARE': 0.0, 'CORN_FDIC_SHARE': 0.0, 'CORN_REPORTING_SHARE': 0.0, 'COTTON_FDIC_SHARE': 0.0, 'COTTON_REPORTING_SHARE': 0.0, 'DAIRY_FDIC_SHARE': 0.0, 'DAIRY_REPORTING_SHARE': 0.0, 'HOGS_FDIC_SHARE': 0.0, 'HOGS_REPORTING_SHARE': 0.0, 'POULTRY_FDIC_SHARE': 0.0, 'POULTRY_REPORTING_SHARE': 0.0, 'SOYBEANS_FDIC_SHARE': 0.0, 'SOYBEANS_REPORTING_SHARE': 0.0, 'WHEAT_FDIC_SHARE': 0.0, 'WHEAT_REPORTING_SHARE': 0.0}}
I then want an additional column that sorts by the three largest data points so the first row would match the bottom image.