it will keeping calling itself until condition became false
yes, that is how it works.
The algorithm takes a range l
to r
and split it into two ranges and calls mergesort
on each of the ranges.
Example (to keep it short I use ms instead of mergeSort)
Initial series of calls:
ms(a, 0, 8) ---> ms(a, 0, 4) ---> ms(a, 0, 2) ---> ms(a, 0, 1) ---> ms(a, 0, 0)
Since the values 0
and 0
fails the condition l < r
so that call will just return and the second call of mergeSort
in previous recursion level will be executed. Leading to:
ms(a, 0, 8) ---> ms(a, 0, 4) ---> ms(a, 0, 2) ---> ms(a, 0, 1) ---> ms(a, 0, 0)
|
--> ms(a, 1, 1)
Once again the values 1
and 1
fails the condition l < r
so that call will just return and after the merge
we will return to the previous recursion level and do the second call to mergeSort
at that level.
ms(a, 0, 8) ---> ms(a, 0, 4) ---> ms(a, 0, 2) ---> ms(a, 0, 1) ---> ms(a, 0, 0)
| |
| --> ms(a, 1, 1)
|
--> ms(a, 2, 2)
2
and 2
just makes us return to the previous recursion level where mergeSort
is called the second time. I guess you see the picture now...
ms(a, 0, 8) ---> ms(a, 0, 4) ---> ms(a, 0, 2) ---> ms(a, 0, 1) ---> ms(a, 0, 0)
| | | |
| | | --> ms(a, 1, 1)
| | |
| | --> ms(a, 2, 2)
| |
| --> ms(a, 3, 4) ---> ms(a, 3, 3)
| |
| --> ms(a, 4, 4)
|
--> ms(a, 5, 8) ---> ... finish this your self ...
Another approach for understanding the call sequence is to add a "recursion level" and do some simple print when mergeSort
is called:
#include <stdio.h>
void mergeSort(int arr[], int l, int r, int level)
{
printf("Recursion level %d l=%d r=%d\n", level, l, r);
if (l < r)
{
// Same as (l+r)/2, but avoids overflow for
// large l and h
int m = l+(r-l)/2;
// Sort first and second halves
mergeSort(arr, l, m, level+1);
mergeSort(arr, m+1, r, level+1);
// merge commented out as it is irrelevant for the call sequence
// merge(arr, l, m, r);
}
}
int main()
{
int a[] = {9, 8, 7, 6, 5, 4, 3, 2, 1};
mergeSort(a, 0, 8, 0);
return 0;
}
Output:
Recursion level 0 l=0 r=8
Recursion level 1 l=0 r=4
Recursion level 2 l=0 r=2
Recursion level 3 l=0 r=1
Recursion level 4 l=0 r=0
Recursion level 4 l=1 r=1
Recursion level 3 l=2 r=2
Recursion level 2 l=3 r=4
Recursion level 3 l=3 r=3
Recursion level 3 l=4 r=4
Recursion level 1 l=5 r=8
Recursion level 2 l=5 r=6
Recursion level 3 l=5 r=5
Recursion level 3 l=6 r=6
Recursion level 2 l=7 r=8
Recursion level 3 l=7 r=7
Recursion level 3 l=8 r=8
Same output but with level dependent indentation:
Recursion level 0 l=0 r=8
Recursion level 1 l=0 r=4
Recursion level 2 l=0 r=2
Recursion level 3 l=0 r=1
Recursion level 4 l=0 r=0
Recursion level 4 l=1 r=1
Recursion level 3 l=2 r=2
Recursion level 2 l=3 r=4
Recursion level 3 l=3 r=3
Recursion level 3 l=4 r=4
Recursion level 1 l=5 r=8
Recursion level 2 l=5 r=6
Recursion level 3 l=5 r=5
Recursion level 3 l=6 r=6
Recursion level 2 l=7 r=8
Recursion level 3 l=7 r=7
Recursion level 3 l=8 r=8