I drank the struct/value koolaid in Swift. And now I have an interesting problem I don't know how to solve. I have a struct which is a container, e.g.
struct Foo {
var bars:[Bar]
}
As I make edits to this, I create copies so that I can keep an undo stack. So far so good. Just like the good tutorials showed. There are some derived attributes that I use with this guy though:
struct Foo {
var bars:[Bar]
var derivedValue:Int {
...
}
}
In recent profiling, I noticed a) that the computation to compute derivedValue is kind of expensive/redundant b) not always necessary to compute in a variety of use cases.
In my classic OOP way, I would make this a memoizing/lazy variable. Basically, have it be nil until called upon, compute it once and store it, and return said result on future calls. Since I'm following a "make copies to edit" pattern, the invariant wouldn't be broken.
But I can't figure out how to apply this pattern if it is struct. I can do this:
struct Foo {
var bars:[Bar]
lazy var derivedValue:Int = self.computeDerivation()
}
which works, until the struct references that value itself, e.g.
struct Foo {
var bars:[Bar]
lazy var derivedValue:Int = self.computeDerivation()
fun anotherDerivedComputation() {
return self.derivedValue / 2
}
}
At this point, the compiler complains because anotherDerivedComputation
is causing a change to the receiver and therefore needs to be marked mutating
. That just feels wrong to make an accessor be marked mutating. But for grins, I try it, but that creates a new raft of problems. Now anywhere where I have an expression like
XCTAssertEqaul(foo.anotherDerivedComputation(), 20)
the compiler complains because a parameter is implicitly a non mutating let value, not a var.
Is there a pattern I'm missing for having a struct with a deferred/lazy/cached member?