I'm trying to make a *.pb model using tf.estimator
and export_savedmodel()
, it is a simple classifier to classify iris dataset (4 features, 3 classes):
import tensorflow as tf
num_epoch = 500
num_train = 120
num_test = 30
# 1 Define input function
def input_function(x, y, is_train):
dict_x = {
"thisisinput" : x,
}
dataset = tf.data.Dataset.from_tensor_slices((
dict_x, y
))
if is_train:
dataset = dataset.shuffle(num_train).repeat(num_epoch).batch(num_train)
else:
dataset = dataset.batch(num_test)
return dataset
def my_serving_input_fn():
input_data = tf.placeholder(tf.string, [None], name='input_tensors')
receiver_tensors = {"inputs" : input_data}
# 2 Define feature columns
feature_columns = [
tf.feature_column.numeric_column(key="thisisinput", shape=4),]
features = tf.parse_example(
input_data,
tf.feature_column.make_parse_example_spec(feature_columns))
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
def main(argv):
tf.set_random_seed(1103) # avoiding different result of random
# 2 Define feature columns
feature_columns = [
tf.feature_column.numeric_column(key="thisisinput", shape=4),]
# 3 Define an estimator
classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[10],
n_classes=3,
optimizer=tf.train.GradientDescentOptimizer(0.001),
activation_fn=tf.nn.relu,
model_dir = 'modeliris2/'
)
# Train the model
classifier.train(
input_fn=lambda:input_function(xtrain, ytrain, True)
)
# Evaluate the model
eval_result = classifier.evaluate(
input_fn=lambda:input_function(xtest, ytest, False)
)
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
print('\nSaving models...')
classifier.export_savedmodel("modeliris2pb", my_serving_input_fn)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)
Which will produce a saved_model.pb
file. I've confirmed that the model works. I can also make another program which loads and runs it. Now, I want to summarize and freeze the model using Bazel. If I build Bazel and then run the following command:
bazel-bin/tensorflow/tools/graph_transforms/summarize_graph \
--in_graph=saved_model.pb
I get the following error:
[libprotobuf ERROR external/protobuf_archive/src/google/protobuf/text_format.cc:307] Error parsing text-format tensorflow.GraphDef: 1:1: Invalid control characters encountered in text.
[libprotobuf ERROR external/protobuf_archive/src/google/protobuf/text_format.cc:307] Error parsing text-format tensorflow.GraphDef: 1:4: Interpreting non ascii codepoint 218.
[libprotobuf ERROR external/protobuf_archive/src/google/protobuf/text_format.cc:307] Error parsing text-format tensorflow.GraphDef: 1:4: Expected identifier, got: �
2018-08-14 11:50:17.759617: E tensorflow/tools/graph_transforms/summarize_graph_main.cc:320] Loading graph 'saved_model.pb' failed with Can't parse saved_model.pb as binary proto
(both text and binary parsing failed for file saved_model.pb)
2018-08-14 11:50:17.759670: E tensorflow/tools/graph_transforms/summarize_graph_main.cc:322] usage: bazel-bin/tensorflow/tools/graph_transforms/summarize_graph
Flags:
--in_graph="" string input graph file name
--print_structure=false bool whether to print the network connections of the graph
I don't understand this error. I've tried to use inception pb file and it works perfectly, so I think the problem is on how tf.estimator
builds the .pb
file.
Am I missing something when using export_savedmodel()
or tf.estimator
to create a saved model?
UPDATE
Tensorflow version: v1.9.0-0-g25c197e023 1.9.0
Result of tf_env_collect.sh
:
== cat /etc/issue ===============================================
Linux rianadam 4.15.0-32-generic #35-Ubuntu SMP Fri Aug 10 17:58:07 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
VERSION="18.04.1 LTS (Bionic Beaver)"
VERSION_ID="18.04"
VERSION_CODENAME=bionic
== are we in docker =============================================
No
== compiler =====================================================
c++ (Ubuntu 7.3.0-16ubuntu3) 7.3.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
== uname -a =====================================================
Linux rianadam 4.15.0-32-generic #35-Ubuntu SMP Fri Aug 10 17:58:07 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
== check pips ===================================================
numpy 1.15.0
protobuf 3.6.0
tensorflow-gpu 1.9.0
== check for virtualenv =========================================
True
== tensorflow import ============================================
tf.VERSION = 1.9.0
tf.GIT_VERSION = v1.9.0-0-g25c197e023
tf.COMPILER_VERSION = v1.9.0-0-g25c197e023
Sanity check: array([1], dtype=int32)
/home/rian/NgodingYuk/tf_env/env/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
/home/rian/NgodingYuk/tf_env/env/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
== env ==========================================================
LD_LIBRARY_PATH /usr/local/cuda/lib64:/usr/local/cuda-9.0/lib64:/usr/local/cuda/lib64:/usr/local/cuda-9.0/lib64:
DYLD_LIBRARY_PATH is unset
== nvidia-smi ===================================================
Tue Aug 21 11:13:55 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.77 Driver Version: 390.77 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce 920M Off | 00000000:04:00.0 N/A | N/A |
| N/A 51C P0 N/A / N/A | 367MiB / 2004MiB | N/A Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 Not Supported |
+-----------------------------------------------------------------------------+
== cuda libs ===================================================
/usr/local/cuda-9.0/lib64/libcudart_static.a
/usr/local/cuda-9.0/lib64/libcudart.so.9.0.176
/usr/local/cuda-9.0/doc/man/man7/libcudart.7
/usr/local/cuda-9.0/doc/man/man7/libcudart.so.7