I occasionally run into this problem as well, and it is hard to find an easily generalisable solution. Say I have more complex combinations of arguments that are delineated by a set of mutually exclusive arguments and want to support additional arguments for each (some of which may be required and some optional), as in the following signatures:
def func(mutex1: str, arg1: bool): ...
def func(mutex2: str): ...
def func(mutex3: int, arg1: Optional[bool] = None): ...
I would use object orientation to wrap the arguments in a set of descriptors (with names depending on the business meaning of the arguments), which can then be validated by something like pydantic:
from typing import Optional
from pydantic import BaseModel, Extra
# Extra.forbid ensures validation error if superfluous arguments are provided
class BaseDescription(BaseModel, extra=Extra.forbid):
pass # Arguments common to all descriptions go here
class Description1(BaseDescription):
mutex1: str
arg1: bool
class Description2(BaseDescription):
mutex2: str
class Description3(BaseDescription):
mutex3: int
arg1: Optional[bool]
You could instantiate these descriptions with a factory:
class DescriptionFactory:
_class_map = {
'mutex1': Description1,
'mutex2': Description2,
'mutex3': Description3
}
@classmethod
def from_kwargs(cls, **kwargs) -> BaseDescription:
kwargs = {k: v for k, v in kwargs.items() if v is not None}
set_fields = kwargs.keys() & cls._class_map.keys()
try:
[set_field] = set_fields
except ValueError:
raise ValueError(f"exactly one of {list(cls._class_map.keys())} must be provided")
return cls._class_map[set_field](**kwargs)
@classmethod
def validate_kwargs(cls, func):
def wrapped(**kwargs):
return func(cls.from_kwargs(**kwargs))
return wrapped
Then you can wrap your actual function implementation like this and use type checking to see which arguments were provided:
@DescriptionFactory.validate_kwargs
def func(desc: BaseDescription):
if isinstance(desc, Description1):
... # use desc.mutex1 and desc.arg1
elif isinstance(desc, Description2):
... # use desc.mutex2
... # etc.
and call as func(mutex1='', arg1=True)
, func(mutex2='')
, func(mutex3=123)
and so on.
This is not overall shorter code, but it performs argument validation in a very descriptive way according to your specification, raises useful pydantic errors when validation fails, and results in accurate static types in each branch of the function implementation.
Note that if you're using Python 3.10+, structural pattern matching could simplify some parts of this.