I've recently been working on some code in python to simulate a 2 dimensional U(1) gauge theory using monte carlo methods. Essentially I have an n by n by 2 array (call it Link) of unitary complex numbers (their magnitude is one). I randomly select element of my Link array and propose a random change to the number at that site. I then compute the resulting change in the action that would occur due to that change. I then accept the change with a probability equal to min(1,exp(-dS)), where dS is the change in the action. The code for the iterator is as follows
def iteration(j1,B0):
global Link
Staple = np.zeros((2),dtype=complex)
for i0 in range(0,j1):
x1 = np.random.randint(0,n)
y1 = np.random.randint(0,n)
u1 = np.random.randint(0,1)
Linkrxp1 = np.roll(Link,-1, axis = 0)
Linkrxn1 = np.roll(Link, 1, axis = 0)
Linkrtp1 = np.roll(Link, -1, axis = 1)
Linkrtn1 = np.roll(Link, 1, axis = 1)
Linkrxp1tn1 = np.roll(np.roll(Link, -1, axis = 0),1, axis = 1)
Linkrxn1tp1 = np.roll(np.roll(Link, 1, axis = 0),-1, axis = 1)
Staple[0] = Linkrxp1[x1,y1,1]*Linkrtp1[x1,y1,0].conj()*Link[x1,y1,1].conj() + Linkrxp1tn1[x1,y1,1].conj()*Linkrtn1[x1,y1,0].conj()*Linkrtn1[x1,y1,1]
Staple[1] = Linkrtp1[x1,y1,0]*Linkrxp1[x1,y1,1].conj()*Link[x1,y1,0].conj() + Linkrxn1tp1[x1,y1,0].conj()*Linkrxn1[x1,y1,1].conj()*Linkrxn1[x1,y1,0]
uni = unitary()
Linkprop = uni*Link[x1,y1,u1]
dE3 = (Linkprop - Link[x1,y1,u1])*Staple[u1]
dE1 = B0*np.real(dE3)
d1 = np.random.binomial(1, np.minimum(np.exp(dE1),1))
d = np.random.uniform(low=0,high=1)
if d1 >= d:
Link[x1,y1,u1] = Linkprop
else:
Link[x1,y1,u1] = Link[x1,y1,u1]
At the beginning of program I call a routine called "randomize" to generate K random unitary complex numbers which have small imaginary parts and store them in an array called Cnum of length K. In the same routine I also go through my Link array and set each element to a random unitary complex number. The code is listed below.
def randommatrix():
global Cnum
global Link
for i1 in range(0,K):
C1 = np.random.normal(0,1)
Cnum[i1] = np.cos(C1) + 1j*np.sin(C1)
Cnum[i1+K] = np.cos(C1) - 1j*np.sin(C1)
for i3,i4 in itertools.product(range(0,n),range(0,n)):
C2 = np.random.uniform(low=0, high = 2*np.pi)
Link[i3,i4,0] = np.cos(C2) + 1j*np.sin(C2)
C2 = np.random.uniform(low=0, high = 2*np.pi)
Link[i3,i4,1] = np.cos(C2) + 1j*np.sin(C2)
The following routine is used during the iteration routine to get a random complex number with a small imaginary part (by retrieving a random element of the Cnum array we generated earlier).
def unitary():
I1 = np.random.randint((0),(2*K-1))
mat = Cnum[I1]
return mat
Here is an example of what the iteration routine would be used for. I've written a routine called plaquette, which calculates the mean plaquette (real part of a 1 by 1 closed loop of link variables) for a given B0. The iteration routine is being used to generate new field configurations which are independent of previous configurations. After we get a new field configuration we calculate the plaquette for said configuration. We then repeat this process j1 times using a while loop, and at the end we end up with the mean plaquette.
def Plq(j1,B0):
i5 = 0
Lboot = np.zeros(j1)
while i5<j1:
iteration(25000,B0)
Linkrxp1 = np.roll(Link,-1, axis = 0)
Linkrtp1 = np.roll(Link, -1, axis = 1)
c0 = np.real(Link[:,:,0]*Linkrxp1[:,:,1]*Linkrtp1[:,:,0].conj()*Link[:,:,1].conj())
i5 = i5 + 1
We need to define some variables before we run anything, so here's the initial variables which I define before defining any routines
K = 20000
n = 50
a = 1.0
Link = np.zeros((n,n,2),dtype = complex)
Cnum = np.zeros((2*K), dtype = complex)
This code works, but it is painfully slow. Is there a way that I can use multiprocessing or something to speed this up?