I have data that looks like this:
Date MBs GBs
0 2018-08-14 20:10 32.00 MB 0.00 GB
1 2018-08-14 20:05 4.00 MB 0.00 GB
2 2018-08-14 20:00 1000.99 MB 1.23 GB
I stripped away the MB and GB by doing this:
df['MBs']=df['MB'].str.strip('MB')
df['GBs']=df['GB'].str.strip('GB')
Then converted the number to a float and got the totals:
df['MBs'] = df['MBs'].astype('float')
df['GBs'] = df['MBs'].astype('float')
df.loc['Total', ['MBs', 'GBs']] = df.sum()
But when I run it my data has exponents
Date Data Transferred (MB) Data Transferred (GB)
146 2018-08-14 08:00:00 1.871237e+05 1.874017e+05
147 2018-08-14 07:55:00 1.123211e+05 1.961854e+05
148 2018-08-14 07:50:00 2.187703e+05 2.187123e+05
...
Total 1.408910e+08 1.408910e+08
How do I convert change that float from exponent to "normal", im only converting it because I need to get the totals