Apologies if this is a repeat question. Many have posted looking looking for a way to do post-hoc analyses on the conditional model (fixed factors) in glmmTMB. I want to do plannned contrasts between certain groups, not test every pairwise comparison (e.g. Tukey).
The code below worked well on nlme:lme for a lmm. However, it returns an error on the code below.
Error in modelparm.default(model, ...) :
dimensions of coefficients and covariance matrix don't match
Is there a way to do planned contrasts on a glmmTMB?
#filtdens is a dataframe and TRT,DATE,BURN,VEG are factors
filtdens <- merged %>% filter(!BLOCK %in% c("JB2","JB4","JB5") & MEAS =="DENS" &
group == "TOT" & BURN == "N" & VEG == "C")
filtdens$TD <- interaction(filtdens$TRT, filtdens$DATE)
mod2 <- glmmTMB(count~(TD)+(1|BLOCK),
data=filtdens,
zi=~1,
family=nbinom1(link = "log"))
k1 <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1), byrow = T, ncol = 12)
summary(glht(mod2, linfct=k1),test=adjusted("bonferroni"))