BACKGROUND INFORMATION:
I have dataframe of x many stocks with y price sets (closing & 3 day SMA), (currently this is 5 and 2 respectively (one is closing price, the other is a 3 day Simple Moving Average SMA).
The current output is [2781 rows x 10 columns]
with a ranging data set start_date = '2006-01-01'
till end_date = '2016-12-31'
. The output is as follows as a dataframe print(df)
:
CURRENT OUTPUT:
ANZ Price ANZ 3 day SMA CBA Price CBA 3 day SMA MQG Price MQG 3 day SMA NAB Price NAB 3 day SMA WBC Price WBC 3 day SMA
Date
2006-01-02 23.910000 NaN 42.569401 NaN 66.558502 NaN 30.792999 NaN 22.566401 NaN
2006-01-03 24.040001 NaN 42.619099 NaN 66.086403 NaN 30.935699 NaN 22.705400 NaN
2006-01-04 24.180000 24.043334 42.738400 42.642300 66.587997 66.410967 31.078400 30.935699 22.784901 22.685567
2006-01-05 24.219999 24.146667 42.708599 42.688699 66.558502 66.410967 30.964300 30.992800 22.794800 22.761700
... ... ... ... ... ... ... ... ... ... ...
2016-12-27 87.346667 30.670000 30.706666 32.869999 32.729999 87.346667 30.670000 30.706666 32.869999 32.729999
2016-12-28 87.456667 31.000000 30.773333 32.980000 32.829999 87.456667 31.000000 30.773333 32.980000 32.829999
2016-12-29 87.520002 30.670000 30.780000 32.599998 32.816666 87.520002 30.670000 30.780000 32.599998 32.816666
MY WORKING CODE:
#!/usr/bin/python3
from pandas_datareader import data
import pandas as pd
import itertools as it
import os
import numpy as np
import fix_yahoo_finance as yf
import matplotlib.pyplot as plt
yf.pdr_override()
stock_list = sorted(["ANZ.AX", "WBC.AX", "MQG.AX", "CBA.AX", "NAB.AX"])
number_of_decimal_places = 8
moving_average_period = 3
def get_moving_average(df, stock_name):
df2 = df.rolling(window=moving_average_period).mean()
df2.rename(columns={stock_name: stock_name.replace("Price", str(moving_average_period) + " day SMA")}, inplace=True)
df = pd.concat([df, df2], axis=1, join_axes=[df.index])
return df
# Function to get the closing price of the individual stocks
# from the stock_list list
def get_closing_price(stock_name, specific_close):
symbol = stock_name
start_date = '2006-01-01'
end_date = '2016-12-31'
df = data.get_data_yahoo(symbol, start_date, end_date)
sym = symbol + " "
print(sym * 10)
df = df.drop(['Open', 'High', 'Low', 'Adj Close', 'Volume'], axis=1)
df = df.rename(columns={'Close': specific_close})
# https://stackoverflow.com/questions/16729483/converting-strings-to-floats-in-a-dataframe
# df[specific_close] = df[specific_close].astype('float64')
# print(type(df[specific_close]))
return df
# Creates a big DataFrame with all the stock's Closing
# Price returns the DataFrame
def get_all_close_prices(directory):
count = 0
for stock_name in stock_list:
specific_close = stock_name.replace(".AX", "") + " Price"
if not count:
prev_df = get_closing_price(stock_name, specific_close)
prev_df = get_moving_average(prev_df, specific_close)
else:
new_df = get_closing_price(stock_name, specific_close)
new_df = get_moving_average(new_df, specific_close)
# https://stackoverflow.com/questions/11637384/pandas-join-merge-concat-two-dataframes
prev_df = prev_df.join(new_df)
count += 1
# prev_df.to_csv(directory)
df = pd.DataFrame(prev_df, columns=list(prev_df))
df = df.apply(pd.to_numeric)
convert_df_to_csv(df, directory)
return df
def convert_df_to_csv(df, directory):
df.to_csv(directory)
def main():
# FINDS THE CURRENT DIRECTORY AND CREATES THE CSV TO DUMP THE DF
csv_in_current_directory = os.getcwd() + "/stock_output.csv"
csv_in_current_directory_dow_distribution = os.getcwd() + "/dow_distribution.csv"
# FUNCTION THAT GETS ALL THE CLOSING PRICES OF THE STOCKS
# AND RETURNS IT AS ONE COMPLETE DATAFRAME
df = get_all_close_prices(csv_in_current_directory)
print(df)
# Main line of code
if __name__ == "__main__":
main()
QUESTION:
From this df
I want to create x many lines graphs (one graph per stock) with y many lines (price, and SMAs). How can I do this with matplotlib? Could this be done with a for loop and save the individuals plots as the loop gets iterated? If so how?