I am using sklearn
's multilabelbinarizer()
to train multiple columns in my machine learning which I use to train my model.
After using it I noticed it was mixing up my data when it inverse transforms it. I created a test set of random values where I fit the data, transform it, and inverse_transform
the data to get back to the original data.
I ran a simple test in jupyter
notebook to show the error:
In the inverse_transformed
value it messes up in row 1 mixing up the state and month.
First of all, is there an error in how I use the multilabelbinarizer
? Is there a different way to achieve the same output?
EDIT: Thank you to @Nicolas M. for helping me solve my question. I ended up solving this issue like this.
Forgive the rough explanation, but it turned out to be more complicated than I originally thought. I switched to using the label_binarizer
instead of the multi_label_binarizer
because it
I ended up pickling the label_binarizer
defaultdict
so I can load it and use it in different modules for my machine learning project.
One thing that might not be trivial is me adding new headers to dataframe I make for each column. It was in the form of column_name + column number. I did this because I needed to inverse transform the data. To do that I searched for the columns that contained the original column name which separated the larger dataframe into the individual column chunks.
here some variables that I used and what they mean for reference:
lb_dict
- default dict that stores the different label binarizers.
binarize_df
- dataframe that stores the binarized data.
binarized_label
- label binarizes one label in the column.
header
- creates a new header form: column name + number column.
inverse_df
- dataframe that stores the inverse_transformed data.
one_label_list
- finds the list of column names with the original column tag.
one_label_df
- creates a new data frame that only stores the binarized data for one column.
single_label
- binarized data that gets inverse_transformed into one column.
in this code data is the dataframe that I pass to the function.
lb_dict = defaultdict(LabelBinarizer)
# create a place holder dataframe to join new binarized data to
binarize_df = pd.DataFrame(['x'] * len(data.index), columns=['place_holder'])
# loop through each column and create a binarizer and fit/transform the data
# add new data to the binarize_df dataframe
for column in data.columns.values.tolist():
lb_dict[column].fit(data[column])
binarized_label = lb_dict[column].transform(data[column])
header = [column + str(i) for i in range(0, len(binarized_label[0]))]
binarize_df = binarize_df.join(pd.DataFrame(binarized_label, columns=header))
# drop the place holder value
binarize_df.drop(labels=['place_holder'], axis=1, inplace=True)
Here is the inverse_transform function that I wrote:
inverse_df = pd.DataFrame(['x'] * len(output.index), columns=['place_holder'])
# use a for loop to run through the different output columns that need to be inverse_transformed
for column in output_cols:
# create a list of the different headers based on if the name contains the original output column name
one_label_list = [x for x in output.columns.values.tolist() if column in x]
one_label_df = output[one_label_list]
# inverse transform the data frame for one label
single_label = label_binarizer[column].inverse_transform(one_label_df.values)
# join the output of the single label df to the entire output df
inverse_df = inverse_df.join(pd.DataFrame(single_label, columns=[column]))
inverse_df.drop(labels=['place_holder'], axis=1, inplace=True)