I try to understand the differences between the two methods bayes
and mle
in the bn.fit
function of the package bnlearn
.
I know about the debate between the frequentist and the bayesian approach on understanding probabilities. On a theoretical level I suppose the maximum likelihood estimate mle
is a simple frequentist approach setting the relative frequencies as the probability. But what calculations are done to get the bayes
estimate? I already checked out the bnlearn documenation, the description of the bn.fit function and some application examples, but nowhere there's a real description of what's happening.
I also tried to understand the function in R by first checking out bnlearn::bn.fit
, leading to bnlearn:::bn.fit.backend
, leading to bnlearn:::smartSapply
but then I got stuck.
Some help would be really appreciated as I use the package for academic work and therefore I should be able to explain what happens.