The piece of code below tries to do the following:
For each customer_code
in sdf1
, check if this customer code appears in sdf2
. If it does, replace the df1.actual_related_customer
with the df2.actual_related_customer
.
This code is not working because I access my rows in df2
wrongly. How can I achieve the above goal? (if you have another suggestion than indices, shoot!)
sdf1 = sqlCtx.createDataFrame(
[
('customer1', 'customer_code1', 'other'),
('customer2', 'customer_code2', 'other'),
('customer3', 'customer_code3', 'other'),
('customer4', 'customer_code4', 'other')
],
('actual_related_customer', 'customer_code', 'other')
)
sdf2 = sqlCtx.createDataFrame(
[
('Peter', 'customer_code1'),
('Deran', 'customer_code5'),
('Christopher', 'customer_code3'),
('Nick', 'customer_code4')
],
('actual_related_customer', 'customer_code')
)
def right_customer(x,y):
for row in sdf2.collect() :
if x == row['customer_code'] :
return row['actual_related_customer']
return y
fun1 = udf(right_customer, StringType())
test = sdf1.withColumn(
"actual_related_customer",
fun1(sdf1.customer_code, sdf1.actual_related_customer)
)
And my desired output would look like:
desired_output = sqlCtx.createDataFrame(
[
('Peter', 'customer_code1', 'other'),
('customer2', 'customer_code2', 'other'),
('Christopher', 'customer_code3', 'other'),
('Nick', 'customer_code4', 'other')
],
('actual_related_customer', 'customer_code', 'other')
)