I tried to solve Project Euler #37:
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. Find the sum of the only eleven primes that are both truncatable from left to right and right to left. NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
I wrote my code in Python but I am facing weird issues. Here's my code:
def isPrime(n):
if n == 2 or n == 3 or n == 5: return True
if n < 2 or n%2 == 0: return False
if n < 9: return True
if n%3 == 0: return False
if n%5 == 0: return False
r = int(n**0.5)
f = 5
while f <= r:
if n%f == 0: return False
if n%(f+2) == 0: return False
f +=6
return True
def gen(nb):
results = []
nb_str = str(nb)
for k in range(0, len(nb_str) - 1):
results.append(nb_str[k:])
results.append(nb_str[-k:])
return results
def check(nb):
for t in gen(nb):
if not isPrime(int(t)):
return False
return True
c = 0
s = 0
i = 2
while c != 11:
if check(i):
c += 1
s += i
i += 1
print(s)
Where does the error come from? (The expected result is 748317)
I suspect the errors coming from the results list