I was trying to do the example of ML.net to predict New York taxi fares, but when I finished the tutorial had the message: Program does not contain a static 'Main' method suitable for an entry point
Here the code that I did:
Class Program.cs
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Models;
using Microsoft.ML.Trainers;
using Microsoft.ML.Transforms;
using System.Threading.Tasks;
namespace TaxiFarePrediction2
{
public class Program
{
static readonly string _datapath = Path.Combine(Environment.CurrentDirectory, "Data", "taxi-fare-train.csv");
static readonly string _testdatapath = Path.Combine(Environment.CurrentDirectory, "Data", "taxi-fare-test.csv");
static readonly string _modelpath = Path.Combine(Environment.CurrentDirectory, "Data", "Model.zip");
static async Task Main(string[] args)
{
PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = await Train();
Evaluate(model);
TaxiTripFarePrediction prediction = model.Predict(TestTrips.Trip1);
Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.FareAmount);
}
public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train()
{
var pipeline = new LearningPipeline
{
new TextLoader(_datapath).CreateFrom<TaxiTrip>(useHeader: true, separator: ','),
new ColumnCopier(("FareAmount", "Label")),
new CategoricalOneHotVectorizer(
"VendorId",
"RateCode",
"PaymentType"),
new ColumnConcatenator(
"Features",
"VendorId",
"RateCode",
"PassengerCount",
"TripDistance",
"PaymentType"),
new FastTreeRegressor()
};
PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>();
await model.WriteAsync(_modelpath);
return model;
}
private static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model)
{
var testData = new TextLoader(_testdatapath).CreateFrom<TaxiTrip>(useHeader: true, separator: ',');
var evaluator = new RegressionEvaluator();
RegressionMetrics metrics = evaluator.Evaluate(model, testData);
Console.WriteLine($"Rms = {metrics.Rms}");
Console.WriteLine($"RSquared = {metrics.RSquared}");
}
}
}
class TaxiTrip.cs
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.ML.Runtime.Api;
namespace TaxiFarePrediction2
{
public class TaxiTrip
{
[Column("0")]
public string VendorId;
[Column("1")]
public string RateCode;
[Column("2")]
public float PassengerCount;
[Column("3")]
public float TripTime;
[Column("4")]
public float TripDistance;
[Column("5")]
public string PaymentType;
[Column("6")]
public float FareAmount;
}
public class TaxiTripFarePrediction
{
[ColumnName("Score")]
public float FareAmount;
}
}
class TestTrips.cs
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.ML.Runtime.Api;
namespace TaxiFarePrediction2
{
public class TaxiTrip
{
[Column("0")]
public string VendorId;
[Column("1")]
public string RateCode;
[Column("2")]
public float PassengerCount;
[Column("3")]
public float TripTime;
[Column("4")]
public float TripDistance;
[Column("5")]
public string PaymentType;
[Column("6")]
public float FareAmount;
}
public class TaxiTripFarePrediction
{
[ColumnName("Score")]
public float FareAmount;
}
}
The tutorial is in : https://learn.microsoft.com/en-us/dotnet/machine-learning/tutorials/taxi-fare
please help me to do this example.