I have a time series data ,I want to get the interval of data in such a way that if 1 is detected in detector column then it will be the end of one interval and start of other interval .I can do this with groupby but I want an alternative method to do so because of the performance issue while using groupby and also simultaneously detecting the interval in such a way if the difference between time for two consecutive rows is greater than or equal to 15.
For simplicity we can take an example like below
time | detector
5 | 0
10 | 0
15 | 0
20 | 0
25 | 1
35 | 0
40 | 0
56 | 0
57 | 0
55 | 0
60 | 1
65 | 0
70 | 0
75 | 0
80 | 1
85 | 0
Output I want is
interval
[5,25]
[25,60]
[40,56]
[60,80]
[80,85]
update 1:
val wAll = Window.partitionBy(col("imei")).orderBy(col("time").asc)
val test= df.withColumn("lead_time", lead("time", 1, null).over(wAll)).withColumn("runningTotal", sum("detector").over(wAll))
.groupBy("runningTotal").agg(struct(min("time"), max("lead_time")).as("interval"))
This is for calculation of data points greater than equal to 15min
val unreachable_df=df
.withColumn("lag_time",lag("time", 1, null).over(wAll))
.withColumn("diff_time",abs((col("time") - col("lag_time"))/60D))
.withColumn("unreachable",when(col("diff_time")>=15.0,0).otherwise(1))
.drop(col("diff_time"))
.drop(col("lag_time"))
.withColumn("runningTotal", sum("unreachable").over(wAll))
.groupBy("runningTotal")
.agg(struct(min("time"), max("time")).as("interval"))
.withColumn("diff_interval",abs((unix_timestamp(col("interval.col1"))-unix_timestamp(col("interval.col2")))))
.filter(col("diff_interval")>0) .drop("diff_interval")
.withColumn("type",lit("Unreachable")).drop("runningTotal")
Then I have merged the two dataframe to get the above result
val merged_df=test.union(unreachable_df).sort(col("interval.col1"))