Hi I have written the following lines of code in python:
# convert the image to HSV color-space
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# compute the color histogram
hist = cv2.calcHist([image], [0, 1, 2], None, [bins, bins, bins], [5, 240, 5, 240, 5, 240])
# normalize the histogram
cv2.normalize(hist, hist)
# return the histogram
return hist.flatten()
I am now trying to re-write it in c++. I found a excellent example at http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.4.10-docs/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html
The problem which I face now is to flatten the hist in c++ such as in the python code.This is the shape of the flatten hist output in python (512,). Any ideas as how to get the same results in c++?
(Edit) c++ code up to this point.
Size size(500,500); image = imread("C:\johan.jpg",IMREAD_COLOR);
resize(image,image,size);//resize image
cvtColor(image, image, CV_BGR2HSV);
// Separate the image in 3 places ( H, S and V )
vector<Mat> bgr_planes;
split(image, bgr_planes );
vector<Mat> hist_flat;
// Establish the number of bins
int histSize = 256;
// Set the ranges ( for H,S,V) )
float range[] = {5, 240} ;
const float* histRange = { range };
bool uniform = true; bool accumulate = false;
Mat b_hist, g_hist, r_hist;
cout << " Working fine Johan...";
// Compute the histograms:
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
//calcHist( &image,3, 0, Mat(), hist_flat, 1, &histSize, &histRange, uniform, accumulate );
// Draw the histograms for B, G and R
int hist_w = 512; int hist_h = 400;
int bin_w = cvRound( (double) hist_w/histSize );
Mat histImage(hist_h,hist_w, CV_8UC3, Scalar(0,0,0));
// Normalize the result to [ 0, histImage.rows ]
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
// Draw for each channel
for( int i = 1; i < histSize; i++ )
{
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
Scalar( 255, 0, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
Scalar( 0, 255, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
Scalar( 0, 0, 255), 2, 8, 0 );
}
// Display
imshow("calcHist Demo", histImage );
imshow("The image resized",image);