I have probably a "bloated graph" see (Why does tf.assign() slow the execution time?) since each epoch taking more and more time but I can't see it in my code. Can you please help me, still a Tensorflow newbie.
# NEURAL NETWORK
def MLP(x, weights, biases, is_training):
# Hiden layer 1
hLayer1 = tf.add(tf.matmul(x, weights["w1"]), biases["b1"])
hLayer1 = tf.nn.sigmoid(hLayer1)
bn1 = batch_norm_wrapper(hLayer1, gamma=weights["gamma1"], beta=weights["beta1"], is_training=is_training, name="1")
hLayer1 = bn1
# Hiden layer 2
hLayer2 = tf.add(tf.matmul(hLayer1, weights["w2"]), biases["b2"])
hLayer2 = tf.nn.sigmoid(hLayer2)
bn2 = batch_norm_wrapper(hLayer2, gamma=weights["gamma2"], beta=weights["beta2"], is_training=is_training, name="2")
hLayer2 = bn2
# Output layer
outLayer = tf.add(tf.matmul(hLayer2, weights["wOut"]), biases["bOut"], name="outLayer")
return outLayer
# Weights and biases
weights = {
"w1": tf.get_variable(shape=[n_input, n_hLayer1], initializer=tf.keras.initializers.he_normal(seed=5), name="w1", trainable=True),
"w2": tf.get_variable(shape=[n_hLayer1, n_hLayer2], initializer=tf.keras.initializers.he_normal(seed=5), name="w2", trainable=True),
"wOut": tf.get_variable(shape=[n_hLayer2, n_classes], initializer=tf.keras.initializers.he_normal(seed=5), name="wOut", trainable=True),
"gamma1": tf.get_variable(shape=[n_hLayer1], initializer=tf.ones_initializer(), name="gamma1", trainable=True),
"beta1": tf.get_variable(shape=[n_hLayer1], initializer=tf.zeros_initializer(), name="beta1", trainable=True),
"gamma2":tf.get_variable(shape=[n_hLayer2], initializer=tf.ones_initializer(), name="gamma2", trainable=True),
"beta2": tf.get_variable(shape=[n_hLayer2], initializer=tf.zeros_initializer(), name="beta2", trainable=True)
}
biases = {
"b1": tf.get_variable(shape=[n_hLayer1], initializer=tf.zeros_initializer(), name="b1", trainable=True),
"b2": tf.get_variable(shape=[n_hLayer2], initializer=tf.zeros_initializer(), name="b2", trainable=True),
"bOut": tf.get_variable(shape=[n_classes], initializer=tf.zeros_initializer(), name="bOut", trainable=True)
}
def batch_norm_wrapper(inputs, gamma, beta, is_training, name, decay=0.999):
pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), name="pop_mean{}".format(name), trainable=False)
pop_var = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), name="pop_var{}".format(name), trainable=False)
if is_training:
batch_mean, batch_var = tf.nn.moments(inputs, [0])
train_mean = tf.assign(pop_mean, pop_mean*decay + batch_mean*(1-decay))
train_var = tf.assign(pop_var, pop_var*decay + batch_var*(1-decay))
with tf.control_dependencies([train_mean, train_var]):
return tf.nn.batch_normalization(x=inputs, mean=batch_mean, variance=batch_var, scale=gamma, offset=beta, variance_epsilon=0.001)
else:
return tf.nn.batch_normalization(x=inputs, mean=pop_mean, variance=pop_var, scale=gamma, offset=beta, variance_epsilon=0.001)
# Model
predictions = MLP(next_element[0], weights, biases, is_training=True)
# Loss function and regularization
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=predictions, labels=next_element[1]))
l1_regularizer = tf.reduce_sum(tf.abs(weights["w1"])) + tf.reduce_sum(tf.abs(weights["w2"])) + tf.reduce_sum(tf.abs(weights["wOut"]))
l2_regularizer = tf.reduce_mean(tf.nn.l2_loss(weights["w1"]) + tf.nn.l2_loss(weights["w2"]) + tf.nn.l2_loss(weights["wOut"]))
loss = loss + r*alpha1*l1_regularizer + (1-r)*alpha2*l2_regularizer
# Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# LAUNCH THE GRAPH
with tf.Session() as sess:
sess.run(init_op)
# Training
for trainEpoch in range(training_epochs):
sess.run(training_iterator_op)
while True:
try:
value = sess.run(next_element)
sess.run([loss, optimizer])
except tf.errors.OutOfRangeError:
break
I use the dataset API to run throught my training data.