You can use panda's method for dataframe df.fillna()
This method is used for converting the NaN or NA to your given parameter.
df.fillna(param to replace Nan)
import numpy as np
import pandas as pd
data = {
'A':[np.nan, 2.0, np.nan, 4.0, 5.0],
'B':[np.nan, 2.0, 3.0, np.nan, 5.0],
'C':[1.0 , np.nan, 3.0, 4.0, np.nan],
'D':[1.0 , 2.0, np.nan, 4.0, np.nan,],
'E':[np.nan, 2.0, np.nan, 4.0, 5.0]
}
df = pd.DataFrame(data)
print(df)
A B C D E
0 NaN NaN 1.0 1.0 NaN
1 2.0 2.0 NaN 2.0 2.0
2 NaN 3.0 3.0 NaN NaN
3 4.0 NaN 4.0 4.0 4.0
4 5.0 5.0 NaN NaN 5.0
df = df.fillna(0) # Applying the method with parameter 0
print(df)
A B C D E
0 0.0 0.0 1.0 1.0 0.0
1 2.0 2.0 0.0 2.0 2.0
2 0.0 3.0 3.0 0.0 0.0
3 4.0 0.0 4.0 4.0 4.0
4 5.0 5.0 0.0 0.0 5.0
If you want to apply this method to the particular column, the syntax would be like this
df[column_name] = df[column_name].fillna(param)
df['A'] = df['A'].fillna(0)
print(df)
A B C D E
0 0.0 NaN 1.0 1.0 NaN
1 2.0 2.0 NaN 2.0 2.0
2 0.0 3.0 3.0 NaN NaN
3 4.0 NaN 4.0 4.0 4.0
4 5.0 5.0 NaN NaN 5.0
You can also use Python's replace()
method to replace np.nan
df = df.replace(np.nan,0)
print(df)
A B C D E
0 0.0 0.0 1.0 1.0 0.0
1 2.0 2.0 0.0 2.0 2.0
2 0.0 3.0 3.0 0.0 0.0
3 4.0 0.0 4.0 4.0 4.0
4 5.0 5.0 0.0 0.0 5.0
df['A'] = df['A'].replace() # Replacing only column A
print(df)
A B C D E
0 0.0 NaN 1.0 1.0 NaN
1 2.0 2.0 NaN 2.0 2.0
2 0.0 3.0 3.0 NaN NaN
3 4.0 NaN 4.0 4.0 4.0
4 5.0 5.0 NaN NaN 5.0