I have the following df
,
inv_date inv_id
2017-10-01 100117
2018-04-02 040218
2018-05-06 060518
where inv_date
is of datetime
dtype
, and inv_id
is str
; I want to convert inv_id
into datetime
, based on the following formats
,
formats = {'%m%d%y': 6, '%d%m%y': 6}
L = [pd.to_datetime(s.str[:v], format=k, errors='coerce') for k, v in formats.items()]
df1 = pd.concat(L, axis=1, keys=[s.name + '_' + str(i) for i, s in zip(count(), L)])
df1 = df.apply(lambda x: x.where(x.between('2000-01-01', datetime.now())))
I want to create a boolean column dummy_inv_id
, which is set to True
if any of non-NaT converted datetime
is within +/- 180 days of inv_date
,
df1 = df1.assign(inv_date=df['inv_date'])
df1['inv_id_1'].between(df1['inv_date'] - Timedelta(180, unit='d'), df1['inv_date'] + Timedelta(180, unit='d'))
df1['inv_id_2'].between(df1['inv_date'] - Timedelta(180, unit='d'), df1['inv_date'] + Timedelta(180, unit='d'))
I am wondering how to consider all datetime columns (inv_id_1
and inv_id_2
) in df1
collectively so if anyone is between inv_date +/- 180 days
, then assign true
to df
for corresponding datetime;
so the results df
look like,
inv_date inv_id dummy_inv_id
2017-10-01 100117 true
2018-04-02 040218 true
2018-05-06 060518 true